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Abstract 

Recent advances in complex automated handwriting identification systems have led 

to a lack of understandability of these systems’ computational processes and features 

by the forensic handwriting examiners that they are designed to support. To mitigate 

this issue, this research studied the relationship between two systems: FLASH ID®, 

an automated handwriting/black box system that uses measurements extracted from 

a static image of handwriting, and MovAlyzeR®, a system that captures kinematic 

features from pen strokes. For this study, 33 writers each wrote 60 phrases from 

the London Letter using cursive writing and handprinting, which led to thousands of 

sample pairs for analysis. The dissimilarities between pairs of samples were calcu- 

lated using two score functions (one for each system). The observed results indicate 

that dissimilarity scores based on kinematic spatial-geometric pen stroke features 

(e.g., amplitude and slant) have a statistically significant relationship with dissimilarity 

scores obtained using static, graph-based features used by the FLASH ID® system. 

Similar relationships were observed for temporal features (e.g., duration and velocity) 

but not pen pressure, and for both handprinting and cursive samples. These results 

strongly imply that both the current implementation of FLASH ID® and MovAlyzeR® 

rely on similar features sets when measuring differences in pairs of handwritten sam- 

ples. These results suggest that studies of biometric discrimination using MovAlyzeR®, 

specifically those based on the spatial-geometric feature set, support the validity of 

biometric matching algorithms based on FLASH ID® output. 
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Highlights 

• For cursive and print writing, over 81,000 pairwise scores were calculated for analysis. 

• Relationships of feature dissimilarity scores of two automated handwriting systems were 

assessed. 
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1 |  INTRODUC TION 

 
In forensic science, examiner-based black box studies “evaluat[e] the 

examiners’ accuracy and consensus in making decisions, rather than 

attempting to determine or dictate how those decisions are made.” 

[1] More broadly, an examiner-based black box study is “an empiri- 

cal study that assesses a subjective method by having examiners 

analyze samples and render opinions about the origin or similarity 

of samples” ([2]; p. 48). Typically, the examiner is viewed as a black 

box, and the aim of the research is to measure the degree to which 

the output or response from the black box examiner conforms with 

ground truth. Conversely, white box studies “are detailed assess- 

ments of the bases of examiners’ decisions, focused not just on the 

end decisions but the features and attributes used by the examiners 

in rendering conclusions” [3]. Although the concepts of black box 

and white box methods of examiner testing in forensic science have 

become well-known in recent years, black box and white box meth- 

ods have their roots in computer systems testing. With advances 

in automated feature recognition systems for forensic science ap- 

plications, the forensic focus on black box methods should include 

both machine-based decision systems and human examiners, with 

increasing emphasis on interpretable artificial intelligence. 

Approaches to automated handwriting identification and ver- 

ification have been developed since the mid-1980s [4]. Several 

systems have emerged over the years including CEDAR-FOX [5], 

Forensic Information System for Handwriting (FISH), WANDA [6], 

and FLASH ID® (Sciometrics, LLC). FLASH ID® is an automated 

handwriting feature extraction program designed for closed-set 

identification of writers [7]. FLASH ID® relies on complex algorithms 

using graph theory to skeletonize and segment handwriting from 

a scanned document into graphemes (or subgraphs) having nodes 

and edges. Each grapheme is assigned an “isomorphism class” based 

on the connectivity structure and a “shape class” based on a set of 

rules centered on each grapheme's geometry. Each grapheme also 

has a feature vector of physical measurements within the geometric- 

spatial domain. Similar to FLASH ID®, other automated systems seg- 

ment handwriting into smaller pieces in order to extract meaningful 

measurements from a larger handwriting sample. The responses 

produced by FLASH ID® involve multiple decisions for segmenting 

and classifying features based on graphemes, but the precise meth- 

ods of doing so are not disclosed to the system's users. In this sense, 

FLASH ID® may be considered a black box evaluative system be- 

cause the transfer function between input and output response is 

not transparent. 

In contrast, MovAlyzeR® (Neuroscript, LLC) is a program that 

records and analyzes dynamic pen movements. MovAlyzeR® cap- 

tures the digitized writing sample and then segments the writing 

sample into individual strokes based on change in stroke direction; 

it encodes the on-line pen strokes to generate spatial-geometric and 

temporal metrics (i.e., kinematics) and pen pressure to character- 

ize the handwritten features. The on-line decoding of pen strokes 

and reduction of feature metrics by the MovAlyzeR® system is fully 

transparent to the user and, as such, we considered it to be a white- 

box evaluative system. 

The process of disentangling the inner workings of an automated 

black box system may not be trivial and, in some cases, the user 

may only have access to the input objects and their outputs but not 

complete access to the black box system. Using the inputs, a white 

box system can deconstruct each object and gain a broader/deeper 

understanding of the closed black box system. These details may be 

used to model the black box system and determine if the features 

measured are significant in predicting the outputs of the black box 

system. The black box and white box systems chosen for modeling 

are FLASH ID® and MovAlyzeR®, respectively. 

The first goal of this study is to use MovAlyzeR® to elucidate the 

informative characteristics of a black box automated handwriting 

feature recognition system used in forensic handwriting comparisons 

(i.e., FLASH ID®). The second goal is to determine the strength of 

associations (if any) of feature differences between the two systems 

for handprinting and cursive styles of handwriting across different 

features. Finally, the third goal is to provide empirical support for the 

validity of the two automated handwriting feature analysis systems 

used. 

To accomplish the first study goal, both systems are deployed on 

the same handwriting sample pairs, and feature dissimilarity scores 

are calculated and used to evaluate the relationship between these 

two systems. Specifically, we are interested in determining whether 

feature differences between two samples of handwriting obtained 

from a black box automated system are associated with feature dif- 

ferences obtained from a white box automated system. 

The second goal is to determine the strength of these associ- 

ations (if any) for handprinting and cursive styles of handwriting 

across multiple feature sets. Based on preliminary power studies 

(see the Appendix) and some knowledge about each system's capa- 

bilities, we formed four expectations. First, knowing that FLASH ID® 

uses a static image, we expect to observe a relationship between 

FLASH ID® dissimilarity scores and the scores for static spatial- 

geometric MovAlyzeR® features. Second, as FLASH ID® does not 

accept dynamic pen features as input, we did not expect to observe 

a relationship between FLASH ID® dissimilarity scores and scores for 

the dynamic temporal MovAlyzeR® features. Third, because FLASH 

ID® uses static images, we did not expect to observe a relationship 

between FLASH ID® dissimilarity scores and scores for the dynamic 

pen pressure features from MovAlyzeR®. Fourth, we expected these 

relationships to hold for both writing styles (i.e., cursive writing vs. 

handprinting). 

• Relationships of scores based on spatial-geometric and graphical features were significant. 

• Statistically significant relationships were observed for print and cursive handwriting samples. 

• Construct and convergent validity of the studied handwriting feature systems is supported. 
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There is evidence that both MovAlyzeR® and FLASH ID® are 

considered valid instruments when applied to their designed pur- 

pose. Regarding MovAlyzeR®, support comes from controlled vali- 

dation studies designed to assess the accuracy of spatial-geometric 

and temporal kinematic features and pen pressure in distinguishing 

genuine from simulated signatures [8,9], measuring signature com- 

plexity [10] and for distinguishing handwriting samples from two 

unknown writers [11]. Several studies summarized in Miller et al. [7] 

support the validity of several versions of FLASH ID®. Walch and 

colleagues [12] reported performance rates from two experiments 

of FLASH ID® deployed in a pairwise comparison of topological 

and geometric classes extracted from handwritten samples. They 

found 100% correct classification from 194 test documents (100 

writers) in the first experiment and 100% correct classification from 

590 test documents (300 writers) in the second. Another study by 

Walch et al. [13] used grapheme-based shape codes processed from 

200 test documents to test the performance of FLASH ID®. They 

reported 99.5% accuracy in correctly identifying same-source docu- 

ments. These studies motivated the third goal of this study, namely, 

to provide further empirical support for the validity of MovAlyzeR® 

and FLASH ID® as measures of handwriting feature and pattern 

analysis systems. A fundamental principle in scientific measurement 

validation is that one of the instruments under study exhibits per- 

formance characteristics that are consistent with the expected re- 

sponse pattern of the behavior being measured [14]. The third aim 

extends this principle to forensic measurement validation, as recom- 

mended in the PCAST Report ([2]; p. 14) as applied to handwriting 

feature and pattern analysis systems. 

 

 
2 | METHODS 

 
2.1 |  Study participants and handwriting sample 

collection 

 
The study recruited 33 volunteer writers from the San Diego Sheriff's 

Crime Laboratory; each subject was asked to write six phrases from 

the London Letter [15] and to repeat each phrase five times using 

both handprinting and cursive writing styles (for a total of 60 writ- 

ing samples per subject). Handwriting data from these subjects 

were used in two prior studies aimed at further understanding the 

decision-making process of forensic document examiners [16,17]. 

Subjects were asked to write the handwriting sample phrases with 

an inking pen on lined papers placed on top of a Wacom (Intuos Pro, 

model PTH-660) digitizing tablet. The stimulus phrase was shown 

on the top of each page, and repetitions were written vertically, five 

per page. A total of 1980 separate handwriting samples were col- 

lected on both paper (for processing in FLASH ID®) and digital forms 

(for processing in MovAlyzeR®) from 33 writers. The 60 handwrit- 

ten samples from each subject collected on paper were scanned 

to digital format and underwent feature extraction via FLASH ID®, 

whereas the 60 digital samples collected on the Wacom tablet un- 

derwent direct feature extraction via MovAlyzeR®. Then, for any 

 

given stimulus phrase and style of writing, the comparison of the 

features between all pairs of samples resulted in a large set of dis- 

similarity scores, as described later. 

 

 
2.2 |  FLASH ID® feature dissimilarity scores 

 
For this study, we modified the scoring output (but not the feature ex- 

traction) of FLASH ID®, as previously described in Fuglsby et al. [16]. 

The output of FLASH ID® encodes all the graphemes in a document 

relative to a reference set of writers (in this case, 50 writers from the 

“FBI100” data set, described in Saunders et al. [18]; the reference set 

is a term used in FLASH ID® to denote a list of possible writers of in- 

terest for the original recommendation system). The graphemes used 

for this encoding were derived from a base set of 50 different writers 

(in this case, the remaining 50 writers from the “FBI100” data set). The 

FLASH ID® system uses the idea of reward functions to construct an 

omnibus score for the corresponding recommendation system. We 

use the idea of a reward function to construct our Vector of Scores 

(VOS); that is, each grapheme receives a set of rewards based on the 

recommender algorithm built by the reference set documents (one 

reward per grapheme for each reference set writer). Although the 

specific mechanism for assigning rewards is not revealed to the user, 

it is known that a larger reward indicates a greater similarity of that 

grapheme to the reference writer's samples (M. Walch, D. Gantz, J. 

Miller, J. Buscaglia, personal communication, September 8–11, 2009). 

For each reference writer, these rewards are then summed over all 

the graphemes in a document, resulting in an omnibus VOS (compa- 

rable with the vector of counts method in Gantz et al. [19], for which 

the rewards are split among a reference set of writers) for each docu- 

ment. Calculating the Euclidean distance between the two VOSs (one 

per writing sample in a pair) yielded the dissimilarity score between 

the pair of writing samples. Larger Euclidean distance scores between 

two VOSs reflect larger feature dissimilarities. This was repeated for 

all possible sample pairs within a given phrase (from the London let- 

ter) and writing style. With 33 writers and five repeats for each of six 

phrases, this procedure yielded dissimilarity scores for 81,180 pos- 

sible pairs for each writing style. The structure of this class of score 

functions leaves much to be desired in terms of how to interpret and 

explain the resulting dissimilarity. 

To the best of our knowledge, the 33 writers who participated 

in this study are not part of the “FBI100” data set, given that they 

were collected approximately 15 years apart in different collections. 

However, as part of our ethical obligation to protect the privacy of 

study subjects, we could not cross-compare identity between the 

two groups. 

 

 
2.3 | MovAlyzeR® kinematic feature 

dissimilarity scores 

 
Handwriting samples were automatically segmented into upstrokes 

and downstrokes using MovAlyzeR®. Pen stroke segmentation 
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points were determined based on the zero-axis crossing of the verti- 

cal velocity curve over time. The zero velocity points along the curve 

reflect a momentary absence of vertical pen movement just prior 

to a direction change. The segmentation criterion is a user-defined 

property that was applied to all samples consistently. Several spatial- 

geometric, temporal, and pressure features were then automatically 

extracted from each upward and downward pen stroke. The set of 

spatial-geometric features included vertical and horizontal stroke 

amplitude, slant, loop surface, and trace length. The set of temporal 

features included stroke duration, peak velocity, and average veloc- 

ity. Pen pressure was treated as a third feature set with only a single 

feature: the average pen pressure during the stroke. 

These features characterize handwriting movement in multiple 

dimensions. The multidimensional kinematic features were trans- 

formed into a single score representing the dissimilarity between 

two handwriting samples, as in Ommen et al. [17]. First, using the 

kinematic features for all upstrokes in a pair of handwriting samples, 

a dissimilarity score is constructed by determining the direction of 

maximum separation by applying linear discriminant analysis (LDA). 

The LDA method uses this direction to classify each upstroke to ei- 

ther the first or second sample in the pair by providing an estimated 

posterior probability of belonging to the first sample. For handwrit- 

ing pairs produced by two different writers, every upstroke from 

the first sample should have posterior probabilities near one, and all 

upstrokes from the second sample should have posterior probabil- 

ities near zero. For sample pairs produced by the same writer, both 

samples should have posterior probabilities anywhere between zero 

and one (depending on the range of natural within-writer variation). 

Then, the integrated squared error difference of the two quantile 

functions for estimated posterior probabilities of upstrokes be- 

tween the pair of handwriting samples is computed. This calculation 

is a measure of the dissimilarity between two quantile functions and 

is known as the Wasserstein distance score (WDS) [20,21]. The WDS 

values range from zero to one, where values near zero indicate more 

overlap in the posterior probabilities for the two samples, and val- 

ues near one indicate less overlap. The level of dissimilarity between 

the measured features of each pairwise comparison is therefore 

determined by the corresponding WDS value. An analogous set of 

steps are repeated to obtain kinematic dissimilarity scores for the 

downstrokes. 

 

 

2.4 | Regression models of pairwise comparisons 

 
A total of 1980 separate handwriting samples were collected on 

both paper and in digital forms from 33 writers. Hard copy samples 

were digitally scanned at 600 pixels per inch (ppi). The MovAlyzeR® 

feature dissimilarity scores for each pair were used to model the 

FLASH ID® feature dissimilarity score as follows. Separate simple 

linear regression models were run for each kinematic feature set 

(n = 3; spatial-geometric, temporal, and pressure), for upstrokes 

and downstrokes (n = 2), for each writing style (n = 2; handprinting 

and cursive), and for each phrase (n = 6) for a total of 72 regression 

 
models (3 × 2 × 2 × 6 = 72). We established that the large num- 

ber of potential co-dependences across multi-writer input samples 

can inflate the Type I error (see Appendix). To minimize the threat 

stemming from multiple comparisons involving the same writer, we 

developed a robust statistical approach that takes the comparison/ 

dependence structure into account. 

We assume that the collections of writing samples (with one 

collection per writer) are independent and identically distributed 

random elements; in effect, we have a simple random sample of 

writers, and from each writer, we have observed one collection of 

writing samples. For each of the writing samples, we have mea- 

sured two sets of features: one corresponding to the FLASH ID® 

VOS dissimilarity score and a second set of features extracted from 

the MovAlyzeR® system. We further reduced the features from the 

MovAlyzeR® system into six sets of subfeatures: spatial-geometric, 

temporal, and pen pressure feature sets for both upstrokes and 

downstrokes. 

For each of these seven sets of measurements (one FLASH 

ID® score and six kinematic feature scores), we developed a 

pairwise dissimilarity score to represent a document-level com- 

parison. Following Ommen et al. [17], the pairwise dissimilarity 

is computed using a modification of the WDS (see the Appendix 

for further details). The goal was to create six different regres- 

sion models to assess the marginal relationship between the 

MovAlyzeR® features and the FLASH ID® features, where the 

WDS for one of the six kinematic feature sets is used as the ex- 

planatory variable and the FLASH ID® dissimilarity score is used 

as the response variable. However, this became difficult because 

the observations (i.e., document-level dissimilarity scores) are not 

independent, although the assumption of independence is re- 

quired to perform regression. 

When the original set of samples are assumed to be a simple ran- 

dom sample (as in this case), the act of performing pairwise com- 

parisons to produce a score introduces a dependence structure that 

must be accounted for before any statistical tests can be performed 

at the desired nominal level. If the full dependency structure (i.e., 

covariance matrix) is known up to a constant, then the generalized 

least-squares (GLS) approach can be used. Unfortunately, in this set- 

ting, there are three distinct terms that are needed before we can 

perform a GLS-based analysis. We do have the advantage of being 

able to solve out for the eigenvectors, but not the eigenvalues, of 

the pairwise dissimilarity scores covariance matrix. These issues are 

explored in greater detail in Appendix. 

To address the issue of independence, the regression approach 

was modified. A summary measure was obtained for each pair of 

writers by averaging their 25 between-writer document-level dissim- 

ilarity scores. This resulted in a reduction of the 13,530 document- 

level dissimilarity scores for each phrase and style of writing to 528 

writer-level dissimilarity scores. (See the Appendix for further de- 

tails.) We performed the modified regression analyses for each of 

the six phrases, handprinting and cursive separately, and only con- 

sidered one of the kinematic feature sets at a time. This resulted in a 

total of 72 tests and corresponding p-values. 
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3 | RESULTS 

 
Scatterplots with regression lines-of-best fit are shown in Figure 1 

for the phrase “Our London business is good” for the set of up- 

strokes for cursive (top row) and handprinting (bottom row) styles, 

respectively. The points on the scatterplots represent the average 

dissimilarity scores across all pairwise comparisons between a pair 

 

of writers. Each plot contains 528 averaged dissimilarity scores; 

for a detailed description of these averaged dissimilarity scores, 

see Appendix. The red regression lines are fit using the averaged 

pairwise scores, and the black line is the average of the red lines 

in each plot. Each plot shows the relationships between individ- 

ual FLASH ID® VOS dissimilarity scores (y-axis) and MovAlyzeR® 

spatial-geometric, temporal, and pressure feature dissimilarity 

 

 
 

FI G U R E 1 Scatterplots with individual (red) and average (black) lines of best fit for cursive (top row) and handprinting (bottom row) 

handwriting showing the relationship between FLASH ID® dissimilarity score (y-axis) and the dissimilarity scores for spatial-geometric (left), 

temporal (center), and pressure (right) features for upstrokes for the phrase “Our London business is good.” The red regression lines are fit 

using the averaged pairwise scores—one score per pair of writers, each line representing the 33 scores with one fixed writer for a total of 33 

red lines. The thick black line is the average of the red lines in each plot [Color figure can be viewed at wileyonlinelibrary.com] 

https://onlinelibrary.wiley.com/
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scores (x-axis) for the set of upstrokes for cursive (top row) and 

handprinting (bottom row) for all possible pairs for this phrase. The 

more negative the kinematic feature dissimilarity score (along the 

x-axis) is, the less dissimilarity there is in that feature between a 

given pair of writers. 

Inspection of the scatterplots reveals a strong positive rela- 

tionship for spatial-geometric feature dissimilarities between the 

two systems. Surprisingly, a modest positive relationship between 

the FLASH ID® VOS dissimilarity score and temporal feature dis- 

similarity score from MovAlyzeR® was observed. Lower FLASH 

ID® VOS dissimilarity scores were associated with lower kinematic 

spatial-geometric and temporal feature-based dissimilarity scores 

for cursive samples, whereas only spatial-geometric feature-based 

dissimilarity scores were significantly associated with FLASH ID® 

VOS dissimilarity scores for handprinted samples. Similar plots 

were obtained for downstrokes and for all phrases other than 

phrase 3. 

Results from the regression models for average dissimilarity 

scores for the relationships between FLASH ID® VOS dissimilar- 

ity scores and MovAlyzeR® spatial-geometric, temporal, and pen 

pressure feature dissimilarities across all pairs of writers for cur- 

sive writing and handprinting are shown in Tables 1–3, respec- 

tively. Results show that spatial-geometric dissimilarity scores 

were significant (p < 0.05) in predicting FLASH ID® VOS dissimi- 

larity scores for both handprinting and cursive sample pairs as well 

as upstrokes and downstrokes. The relationships between tempo- 

ral feature dissimilarity scores and FLASH ID® VOS dissimilarity 

scores were significant (p < 0.05) for cursive sample pairs only, 

whereas the average pen pressure dissimilarity scores across sam- 

ples between two writers was not a significant factor (p > 0.05) in 

predicting FLASH ID® VOS dissimilarity scores. With the excep- 

tion of phrase 3, these patterns were consistent across stroke di- 

rection and across the different phrases from the London Letter. 

Phrase 3 differed from the other 5 phrases as it contains unfamiliar 

words such as “Mr. Lloyd” and “Switzerland,” which may have con- 

tributed to greater dysfluencies and subsequently more variability 

in feature sets across writers as writers self-checked spelling and 

punctuation of this phrase. 

4 | DISCUSSION  

 
In the present study, we expected to observe three patterns. First, 

we expected that we would observe a relationship between these in- 

struments for spatial-geometric features. We found that dissimilar- 

ity scores calculated from spatial-geometric stroke kinematics were 

significantly associated with dissimilarity scores calculated from 

an independent, automated feature recognition system in support 

of our hypothesis. As expected, the relationships between FLASH 

ID® VOS and MovAlyzeR® dissimilarity scores for spatial-geometric 

features were generally consistent, regardless of handwriting style. 

This finding implies that the spatial-geometric features detected and 

used by the FLASH ID® algorithm in its feature quantification may 

be robust to writing style. 

For our second expectation, we did not expect to observe a rela- 

tionship between dissimilarity scores produced by FLASH ID® VOS 

and those produced by kinematic analyses of temporal features. For 

handprinting, we did not find statistically significant relationships. 

However, contrary to this, we found significant relationships in the 

temporal domain for cursive handwriting. This is likely due to the 

well-established relationship between stroke velocity and stroke 

amplitude for limb movement in general [22] and handwriting specif- 

ically [14]. FLASH ID® relies upon complex algorithms to skeletonize 

and segment writing into graphemes, classify these graphemes using 

the resulting nodes and edges, and calculate the physical measure- 

ments exclusively within the spatial-geometric domain. Although it 

is a black box system, the static input (i.e., digital scan of a docu- 

ment) contains no temporal components for the algorithms to utilize. 

Because two of the three parameters that make up the temporal 

feature set are velocity measures, it is possible that the temporal 

features were correlated with at least one of the spatial-geometric 

features driving the FLASH ID®–kinematic relationship. Thus, at 

least for cursive handwriting, velocity and amplitude are probably 

not independent features. 

For the third expectation, we did not expect to observe a rela- 

tionship between dissimilarity scores produced by FLASH ID® VOS 

and those associated with pen pressure. This expectation holds as 

we did not find any statistically significant relationships. As a static 

 

TA B L E 1 Results from regression models predicting FLASH ID® dissimilarity scores based on MovAlyzeR® spatial-geometric dissimilarity 

scores for cursive writing and handprinting sample pairs for upstrokes and downstrokes 
 

 
Downstrokes 

     
Upstrokes 

 

 
 

 
Phrase 

Print 

 
Slope 

Coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

 
Print 

 
Slope 

coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

1 0.259 0.001  0.204 0.003  0.197 0.043  0.155 0.016 

2 0.315 <0.001  0.309 <0.001  0.315 0.001  0.283 <0.001 

3 0.306 <0.001  0.076 0.174  0.243 0.012  0.062 0.167 

4 0.233 <0.001  0.212 <0.001  0.215 0.017  0.172 0.001 

5 0.185 0.005  0.250 <0.001  0.030 0.740  0.220 <0.001 

6 0.263 <0.001  0.187 0.001  0.250 0.001  0.180 <0.001 



 

 

 
TA B L E 2  Results from regression models predicting FLASH ID® dissimilarity scores based on MovAlyzeR® temporal dissimilarity scores 

for cursive writing and handprinting sample pairs for upstrokes and downstrokes 
 

 
Downstrokes 

     
Upstrokes 

    

 
 

 
Phrase 

Print 

 
Slope 

coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

 
Print 

 
Slope 

coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

1 0.051 0.528  0.106 0.232  0.113 0.218  0.167 0.057 

2 0.094 0.373  0.197 0.043  0.173 0.083  0.332 <0.001 

3 0.020 0.857  −0.006 0.910  0.084 0.482  0.039 0.449 

4 0.005 0.948  0.166 0.016  0.032 0.762  0.179 0.004 

5 −0.063 0.464  0.277 0.002  −0.074 0.381  0.183 0.004 

6 0.138 0.174  0.176 0.023  0.134 0.127  0.177 0.004 

 
 

TA B L E 3 Results from regression models predicting FLASH ID® dissimilarity scores based on MovAlyzeR® pen pressure dissimilarity 

scores for cursive writing and handprinting sample pairs for upstrokes and downstrokes 
 

 
Downstrokes 

     
Upstrokes 

 

 
 

 
Phrase 

Print 

 
Slope 

coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

 
Print 

 
Slope 

coefficient 

 
 
 

p-value 

 
Cursive 

 
Slope 

coefficient 

 
 
 

p-value 

1 −0.032 0.666  −0.064 0.193  0.087 0.501  −0.062 0.27 

2 −0.034 0.645  −0.078 0.138  −0.008 0.952  −0.016 0.813 

3 −0.053 0.508  −0.022 0.636  0.092 0.568  0.032 0.530 

4 −0.053 0.498  −0.015 0.738  −0.066 0.610  0.012 0.823 

5 −0.041 0.631  −0.079 0.119  0.071 0.635  −0.011 0.835 

6 0.003 0.972  −0.078 0.133  0.017 0.897  −0.024 0.637 

 

 

feature encoding system, FLASH ID® was not designed to encode 

pressure features in handwriting. However, considering that pen 

pressure often affects line thickness in the static handwriting sam- 

ple, it is possible that pressure variation could affect the skeleton- 

ization and attribution of some grapheme structures in FLASH ID® 

(e.g., lower case “e” and “i”). Although line thickness can also be im- 

pacted by writing instrument (e.g., ballpoint pen vs marker), in the 

present study, all writers used the same writing instrument. 

The kinematic feature dissimilarity scores for upstrokes be- 

haved similarly to downstrokes with regard to their correlations 

with FLASH ID® VOS dissimilarity scores. This observation is not 

surprising, given that some of the graphemes used in the FLASH 

ID® system will contain both upstrokes and downstrokes. Further 

research may disentangle a stroke–direction effect that this study 

did not capture. There are strong correlations between the upstroke 

and downstroke dissimilarity scores (for both spatial-geometric and 

temporal); thus, seeing the significant p-values of these models with 

respect to the FLASH ID® VOS dissimilarity scores is not surprising. 

The third goal of the present study was to provide empirical sup- 

port for the validity of two automated handwriting feature analysis 

systems, MovAlyzeR® and FLASH ID®. Our results support both the 

construct and convergent validity of MovAlyzeR® and FLASH ID® 

as instruments capable of detecting differences in handwriting fea- 

tures between two samples written by different writers. The con- 

struct itself is a “process or characteristic believed to account for 

individual or group differences in behavior” ([23]; p. 1) where con- 

struct validity refers to how well an instrument measures that be- 

havior or characteristic [24,25]. Handwriting consists of a series of 

individual pen movements or strokes, each characterized by multiple 

features in the spatial-geometric, temporal, and pressure domains. 

These characteristics form the construct used by examiners to un- 

derstand variability within and across writers. Based on the robust 

statistical relationships between dissimilarity scores measured by 

our two instruments, especially in the spatial-geometric domain, we 

may conclude that both instruments are valid as measures of the 

construct that handwriting is a series of spatial-geometric parame- 

ters or patterns. 

Convergent validity reflects the relationship among different 

measures of the same construct [23]. The present study demon- 

strated empirically that different measures of the same construct 

were statistically related. Dissimilarity scores derived from two dif- 

ferent approaches to measuring handwriting converged along with 

some (but not all) features. Specifically, we observed convergence 

for spatial-geometric features such as vertical and horizontal stroke 
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amplitude, slant, and trace length; however, such convergence was 

not observed for pen pressure. Where present, convergent validity 

held for both handprinting and cursive writing styles. 

Within a statistical framework, validity can be defined as the 

absence of both random and systematic measurement error [14]. 

Although it is unreasonable to expect the complete absence of ran- 

dom or unexplained error between two independent measurement 

systems, minimizing systematic error is an attainable goal. Results 

from the present study demonstrate that there is at least a linear re- 

lationship between the FLASH ID® VOS dissimilarity scores and the 

previously noted subsets of the kinematic dissimilarity scores. In the 

present study, individual regression models for each of the kinematic 

feature scores were used, which ignores any possible interactions 

between the kinematic features. In the future, a single model that in- 

corporates all the kinematic features could be developed using more 

sophisticated statistical tools. However, before these methods can 

be applied, they must be fully developed for pairwise comparison 

data [26]. 

Last, the guidance document published by the Presidents’ 

Council of Advisors on Science and Technology [2] on ensuring sci- 

entific validity of forensic feature comparison methods recognizes a 

valid scientific instrument as one that “has shown, based on empirical 

studies, to be reliable with levels of repeatability, reproducibility, and 

accuracy that are appropriate to the intended application.” (p. 48). 

The PCAST position on scientific validity is that if a measurement 

of a feature (or in this case, feature-based dissimilarity scores) pro- 

duced accurate results (based on some accepted standard) and these 

results can be reproduced, then one can claim that the measurement 

system is valid within the context of legal discourse. Results from the 

present study demonstrate the scientific validity that is accepted in 

legal discourse for our intended application of both MovAlyzeR® and 

FLASH ID® as biometric verification systems. 

Computational algorithms used in proprietary automated foren- 

sic biometric identification systems are considered black box sys- 

tems and, therefore, pose a challenge for proper discovery in the 

U.S. judicial system. To increase their transparency and interpret- 

ability, many have called for the release of algorithm source code, 

potentially infringing the intellectual property of the algorithm 

developers. Our approach offers an alternative to the access to 

intellectual property while addressing the need for transparency 

and interpretability of such algorithms by developing techniques to 

characterize the performance of a black box algorithm in terms of a 

transparent system. 

The present research focused on two systems, and any exten- 

sion of the results of this research to other systems is not warranted 

at this time. Further research is needed to test whether the correla- 

tions observed in the present study between a black box system 

designed for writer verification and an open handwriting kinematic 

feature analysis system generalize to other automated systems such 

as CEDAR-FOX [5] or WANDA [6]. Such studies would strengthen 

the construct and convergent validity of these and other automated 

handwriting feature recognition systems. 

In conclusion, the present study demonstrated that a white box 

system has the potential to inform the user of, and to validate, a 

black box system. Using handwriting data, the results of the test- 

ing showed a significant relationship between the FLASH ID® sys- 

tem and the spatial-geometric kinematic features measured by 

MovAlyzeR®, robust to writing content and writing styles. 
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