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1. Introduction

The likelihood ratio paradigm has been proposed as a means for

quantifying the strength of evidence for a variety of forensic

evidence, including handwriting, speech, earmarks, glass

fragments, fingerprints, footwear marks and DNA [1–9]. A body

of evidence can be evaluated by calculating the likelihood ratio,

which compares the probability of the ‘‘evidence’’ under two

competing propositions (or hypotheses), often denoted as the

prosecution proposition (Hp) and the defense proposition (Hd).

Consider the scenario where two items of evidence are found

over the course of a forensic investigation, and the following

source-level hypotheses are of interest:

Hp: The two items came from the same source,

Hd: The two items came from different sources.
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A B S T R A C T

Score-based approaches for computing forensic likelihood ratios are becoming more prevalent in the

forensic literature. When two items of evidential value are entangled via a scorefunction, several

nuances arise when attempting to model the score behavior under the competing source-level

propositions. Specific assumptions must be made in order to appropriately model the numerator and

denominator probability distributions. This process is fairly straightforward for the numerator of the

score-based likelihood ratio, entailing the generation of a database of scores obtained by pairing items of

evidence from the same source. However, this process presents ambiguities for the denominator

database generation – in particular, how best to generate a database of scores between two items of

different sources.

Many alternatives have appeared in the literature, three of which we will consider in detail. They

differ in their approach to generating denominator databases, by pairing (1) the item of known source

with randomly selected items from a relevant database; (2) the item of unknown source with randomly

generated items from a relevant database; or (3) two randomly generated items. When the two items

differ in type, perhaps one having higher information content, these three alternatives can produce very

different denominator databases. While each of these alternatives has appeared in the literature, the

decision of how to generate the denominator database is often made without calling attention to the

subjective nature of this process.

In this paper, we compare each of the three methods (and the resulting score-based likelihood ratios),

which can be thought of as three distinct interpretations of the denominator proposition. Our goal in

performing these comparisons is to illustrate the effect that subtle modifications of these propositions

can have on inferences drawn from the evidence evaluation procedure. The study was performed using a

data set composed of cursive writing samples from over 400 writers. We found that, when provided with

the same two items of evidence, the three methods often would lead to differing conclusions (with rates

of disagreement ranging from 0.005 to 0.48). Rates of misleading evidence and Tippet plots are both used

to characterize the range of behavior for the methods over varying sized questioned documents. The

appendix shows that the three score-based likelihood ratios are theoretically very different not only

from each other, but also from the likelihood ratio, and as a consequence each display drastically

different behavior.
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Let x denote1 a measurement obtained from the source, or the

sample with a known source (e.g., suspect’s known writing

samples, crime scene window). Let y denote a measurement

obtained from the trace, or the sample with an unknown source

(e.g., bank robbery note, glass fragment obtained from the

suspect). If one assumes that x and y are realizations from

continuous random variables X and Y, the likelihood ratio is

defined by

LR �
f ðx; yjH p; IÞ

f ðx; yjHd; IÞ
;

where I represents background information, and f denotes the

probability distribution associated with the random variables X

and Y. When x and y are discrete measurements, f is a

probability; when x and y are continuous measurements, f is

a continuous probability density function. As stated in [10], the

numerator and denominator densities might be very different

due to the differing conditioning arguments, but it is common

practice to allow the generic symbol f to represent both

functions.

In many cases (e.g., when the evidence is represented using a

high-dimensional quantification technique [11]), the numerator

and denominator of LR are not obtainable directly, without making

(perhaps) unfounded assumptions about the underlying processes

that generate the evidence [12]. A promising surrogate, which can

be applied to virtually any evidence type, is a score-based approach

[10,12–18].

In this article, we critically examine three methods appearing in

the literature for estimating the score-based likelihood ratio (SLR)

in the specific context of natural handwriting evidence. While our

illustrations focus on this modality, the concepts apply broadly to

the application of these methodologies to any type of evidence for

which a meaningful paired score can be defined.

Each methodology makes very different assumptions about

the nature of the random variables X and Y, specifically in the

denominator (under the defense’s proposition). Often these are

listed either as assumptions [18], an (often unstated) byproduct

of database generation [10,12,16]. The intent of this paper is to

illuminate, for both the statistical and non-statistical audience,

the assumptions underlying the three different methodologies

and how they are in fact subtle changes to the interpretation of

Hd. The hope is that once these interpretations are laid bare, the

forensic community can then appropriately weigh their merits

and applicability. This is particularly important since, as shown

in Section 5 and in Appendix A, the three methods can

yield drastically different results when given the exact same

evidence. It is our belief that these three score-based

methods cannot gain mainstream acceptance until this

denominator specification problem is resolved by the forensic

community.

The outline for this paper is as follows. Section 2 presents each

method in a unified notation, while making explicit each of the

underlying assumptions and their associated Hd interpretation.

Section 3 briefly details the quantification technique used to

quantify handwritten documents (more detailed descriptions

appear elsewhere [13,19]). Also, Section 3 details the algorithms

used to obtain estimates for each SLR, denoted throughout as SLR1,

SLR2 and SLR3. Finally, Sections 4 and 5 detail the design and results

of a comparison study showing the impact that selecting one SLR

over another (i.e., one set of assumptions over another) has on the

estimated SLRs.

2. Score-based likelihood ratios

For many types of forensic evidence, obtaining the likelihood

ratio, as defined above, has proved difficult, if not impossible [12].

For some types of evidence, it is rare that the underlying process

which generates X and Y is sufficiently understood to make the

assumption that the distribution is an element of some common

family of distributions. For example, with certain quantifications of

the elemental composition of glass fragments it is not necessarily

reasonable to make the blanket assumption that X and Y follow a

normal distribution [20], as is often done [21]. Even for the most

basic forms of DNA evidence there were many years of research

and academic discussions before reasonable distributional

assumptions were known to an adequate degree of certainty that

might be required in a court of law [8]. Even if the distribution is

known or can reasonably be assumed, true parameter values are

rarely known and are likely difficult to estimate for the more

complex quantifications of the evidence. When x and y represent

high dimensional measurements, as would be the case if one

considers the multifaceted attributes that make up one’s full body

of handwriting (or writing profile), the problem is exacerbated as

now we are faced with (1) how to probabilistically characterize

each attribute individually and (2) how to capture probabilistic

dependencies sure to exist among the attributes.

Score-based approaches seem able to overcome at least some of

these challenges. If one can capture similarities or differences

between two items via a univariate score function that illuminates

as to whether or not the items have a common source, then the

dimensionality of the problem is greatly reduced [12,15,16].

Determining (or estimating) the probability distribution of this

score function remains a challenge however, as will be highlighted

throughout the remaining sections of this paper.

A brief introduction to score-based likelihood ratios is provided

here. A more detailed discussion, within the context of handwrit-

ten documents can be found in [13]. Let the function which

assesses the dissimilarity between x and y be denoted by D(x, y).

The score-based likelihood can then be described as a proxy of

sorts to the LR,

LR ¼
f ðx; yjH p; IÞ

f ðx; yjHd; IÞ
�

gðDðx; yÞjH p; IÞ

gðDðx; yÞjHd; IÞ
; (1)

where g denotes the probability distribution associated with the

random variable D(X, Y). Often in the literature the rightmost

quantity is also denoted by LR [10,12]. In the interest of

transparency and clarity, in this work this quantity is denoted

by SLR. Another impetus to keep these quantities distinct is that, as

noted by [19], the suitability of the approximation LR � SLR has not

been investigated thoroughly. It is shown in Appendix A for a

simplified scenario (where the probability distributions of X, Y, and

D(X, Y) are all known) that the three SLRs under consideration here

often do not well approximate the LR.

The numerator of the leftmost expression in Eq. (1) can be

interpreted in layman’s terms as: the likelihood of observing these

two measurements if the items come from the same source.

Similarly the denominator can be interpreted as the likelihood of

observing these two measurements if the items come from

different sources. In order to compute this quantity, statisticians

typically make the assumptions (1) the marginal distribution of X is

independent of whether or not Hp or Hd is true, and (2)

measurements on X and Y are independent if Hd is true. Under

assumptions (1) and (2), the LR reduces to:

LR ¼
f ðx; yjH p; IÞ

f ðx; yjHd; IÞ
¼

f ðyjx; H p; IÞ f ðxjH p; IÞ

f ðyjHd; IÞ f ðxjHd; IÞ
¼

f ðyjx; H p; IÞ

f ðyjHd; IÞ
: (2)

1 Throughout this manuscript, the following conventions are used: uppercase

bold letters denote random matrices or vectors; lowercase bold letters denote

observed or known matrices or vectors; lowercase letters denote observed or known

scalars.
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The simplification achieved in Eq. (2) is what drives all DNA

likelihood ratio calculations, and most non-score based approaches

[8,22]. Unfortunately, an analogous development for the SLR (right

side of Eq. (1)) is not possible since measurements from the trace

and the known source are now tied together via the score function

and cannot be disentangled. Conditioning on x is of no use here,

since:

SLR ¼
gðDðx; yÞjH p; IÞ

gðDðx; yÞjHd; IÞ
¼

R
gðDðx; yÞjx; H p; IÞ f ðxjH p; IÞdxR
gðDðx; yÞjx; Hd; IÞ f ðxjHd; IÞdx

; (3)

and, in general, Eq. (3) cannot be simplified in a straightforward

manner, if at all. The simplifications leading to Eq. (2) no longer

hold – the conditioning on x must remain in the denominator, and

the marginal distribution of x no longer cancels out as it appears

inside separate integrals in the numerator and denominator.

Despite the fact that the SLR cannot be simplified in any

meaningful way to facilitate computation, several score-based

methods have emerged in the literature. Many make, either

explicitly or implicitly, simplifying assumptions in order to

estimate the SLR. The body of literature here is growing, and we

restrict our attention to three such methods which serves as a

continuation of our work in [13]. Each SLR method makes use of a

similar numerator estimation technique previously reviewed in

[13], while differing in their approach to estimating the

denominator.

The numerator of the simplified LR appearing in Eq. (2) can be

interpreted in layman’s terms as: the likelihood of observing the

trace measurement if it came from the known source. The

denominator can be interpreted as: the likelihood of observing

the trace measurement if it came from a different source. To

compute the denominator directly, an additional assumption must

be made regarding the alternate source. The most common, often

referred to as the ‘‘random man’’ assumption, is that the source of

the trace is randomly selected from some ‘‘relevant population’’ of

sources [22]. This leads to the following statistical interpretation of

the denominator: the likelihood that the trace measurement came

from a random source in a relevant population.

The interpretation of the numerator for the SLR is slightly

different from that of the LR: the likelihood of observing this score

between the trace and the known source if they came from the same

source. The interpretation of the denominator is: the likelihood of

observing this score between the trace and the known source if they

came from different sources. When one tries to be more specific

about the denominator in order to obtain probability distributions,

ambiguity arises. As above, some notion of ‘‘random source’’ must

come in, but there is subjectivity in how to proceed. Distinct

interpretations of Hdmotivate the three SLRs under consideration in

this paper. The first method contends that the known source is a

random selection from the relevant population; the second contends

that the source of the trace is a random selection from the relevant

population; and the third contends that both the trace and the

known source are randomly selected from the relevant population.

2.1. Score-based numerator

All three methods we consider here have considered the

following interpretation of the SLR numerator: the likelihood of

observing this score if the known source measurement is paired

with measurements taken from traces randomly drawn from the

known source population. The new specification of the hypothesis

being entertained is:

Hp: D(x, y) arises from the distribution of scores obtained by

pairing x with a randomly generated y, where both x and y arise

from the same distribution.

While this hypothesis is not necessarily reasonable from the

perspective of a prosecution attorney, it is in fact the hypothesis

under consideration when one reports one of the three SLRs in

court. For clarity, we will refer to the type of proposition which

fully specifies the desired probability distribution as a statistical

proposition, whereas forensic propositions refer to those of direct

interest to the courts. We prefer this approach over relegating

these specifications to the background information or

enumerating them as assumptions because we feel those

approaches lack transparency and/or clarity, particularly for

non-statisticians.

This new specification introduces conditioning upon x the

numerator of the SLR, that is gðDðx; yÞjH p; IÞ � gðDðx; yÞjx; H p; IÞ.

From Eq. (3) it is clear that this is indeed an approximation. The

impact this type of approximation has on the resultant score-based

likelihood ratios is investigated in Appendix A for a simplified

scenario where all distributions are known.

2.2. SLR1: trace-anchored

Some researchers [14–16] have considered the following

interpretation of the SLR denominator: the likelihood of observing

this score if the trace measurement is paired with measurements

taken from random sources in some relevant population. The

statistical proposition being entertained is:

Hd1: D(x, y) arises from the distribution of scores obtained by

pairing y with a randomly selected x from the relevant

population.

This new interpretation of the denominator of the SLR

actually changes the specification of the SLR denominator,

gðDðx; yÞjHd; IÞ � gðDðx; yÞjy; Hd; IÞ. Noting that conditioning on y

in Eq. (3) (rather than x) would also not lead to any simplification, it

is clear that these two quantities are not in fact equal. Using this

approximation, the first score-based likelihood ratio under

consideration is

SLR1 ¼
gðDðx; yÞjx; H p; IÞ

gðDðx; yÞjy; Hd; IÞ
:

Whether or not SLR1 serves as a reasonable proxy for LR is an open

question. The example in Appendix A is aimed at informing this

debate.

One issue with conditioning on y in the denominator is that it is

asymmetric, in the sense that the numerator and denominator are

conditioning on different quantities. Another conceptual issue

with SLR1 is that, in the case of glass evidence (or any type of

evidence where the item of unknown source is taken from the

suspect), the conditioning in the denominator is on measurements

taken from the suspect. Specific properties of the crime scene

window are ignored entirely, and it is therefore less informative

than if those characteristics had been accounted for [19]. However,

in the case of handwriting this type of conditioning seems more

plausible, as specific properties of the bank robbery note are

informing the denominator probability distribution.

One also might consider the recommended conditioning rules

provided in [23]. They advocate conditioning on the sample with

greater information content, which in the case of handwriting

would be y (the suspect’s known writing samples). However, for

glass the desired conditioning would be x (the window at the

scene) which again leads to ambiguous notions of the ‘‘correct’’

conditioning. It should be noted that in [23] this conditioning

strategy was aimed at simplifying the computation (much like the

arguments in Eq. (2)). This computational advantage is lost for the

SLR, as illustrated above in Eq. (3).
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2.3. SLR2: source-anchored

Others [10] have proceeded with following interpretation of the

SLR denominator: the likelihood of observing this score if trace

measurements taken from randomly selected sources from a

relevant population are paired with the measurement taken from

the known source. This is somewhat analogous to the LR

denominator interpretation in that the trace measurement now

comes from a random source. This interpretation again changes the

specification of the SLR denominator:

SLR2 ¼
gðDðx; yÞjx; H p; IÞ

gðDðx; yÞjx; Hd; IÞ
:

We now have symmetric conditioning, on x in both the

numerator and denominator. Again, whether or not this quantity

serves as reasonable proxy for LR is considered in Appendix A. This

development leads to the following denominator proposition:

Hd2: D(x, y) arises from the distribution of scores obtained by

pairing x with a randomly selected y from the relevant

population.

This approach succumbs to some of the same criticisms as SLR1,

but in reverse: for glass evidence this conditioning seems

reasonable in that specific characteristics of the crime scene

evidence are directly relevant to the denominator distribution, but

for handwriting specific characteristics of the bank robbery note

are ignored (e.g., the writer used all capital letters).

2.4. SLR3: general match

The final SLR approach considered in this work, often used in

biometrics [24], applies the following interpretation of the

denominator: the likelihood of observing this score if a trace

measurement taken from a randomly selected source from a

relevant population is paired with a measurement taken from a

different source randomly selected from a relevant population.

This makes no changes to the SLR denominator:

SLR3 ¼
gðDðx; yÞjx; H p; IÞ

gðDðx; yÞjHd; IÞ
:

Again, whether or not this serves as a reasonable proxy for LR is

considered in Appendix A. This development leads to the following

denominator proposition:

Hd3: D(x, y) arises from the distribution of scores obtained by

pairing a randomly selected X from the relevant population

with a randomly selected Y from that same relevant population.

This SLR is far less informative in that the denominator

distribution depends neither on specific characteristics trace nor

on characteristics of the known source [19]. That is, the

denominator distribution would remain unchanged if a different

trace were observed, or if a different known source is considered.

The next section of the paper shows how to generate each SLR

for a specific quantification of handwritten documents.

3. Estimating SLRs in handwriting

Handwriting-specific definitions of the evidence (following the

notation introduced in [13]) are as follows: ES denotes a collection

of writings known to have originated from the suspect (henceforth

suspect’s template) and x represents some quantification obtained

from those writings. EU denotes a handwritten questioned

document (QD) found at the scene of unknown source, and y

represents some quantification obtained from that document. EA
denotes a collection of writing samples taken from alternative

sources.

3.1. Handwriting quantification

Selection of an appropriate score will depend heavily on the

numeric representation, or quantification technique used to

describe a handwritten document. The quantification method

used here, developed by Gannon Technologies Group, first scans

and skeletonizes the document, which has been manually parsed

into characters, as shown for the word ‘‘London’’ in Fig. 1.

Subsequent to this segmentation, a proprietary, automated process

was used to represent each parsed character’s skeleton by an

isomorphic class of graphs (a geometric form that remains

invariant under certain transformations, e.g., bending or stretch-

ing), referred to as an isocode. Details of this process are described

at length elsewhere [13,25] however a schematic depicting the

method appears in Fig. 1.

Define a writing profile as the entire body of writing that a writer

has written or will ever write. Define a writer’s template as a

collection of writing samples from an individual assumed to be

sufficiently rich for characterizing an individual’s writing profile.

Using this quantification method, ES is reduced to the matrix of

counts computed by combining counts over a large collection of

known writing samples obtained from a suspect (suspect’s

template), represented by the random variable X. EU is reduced

to the matrix of counts computed from a questioned document,

represented by the random variable Y.

3.2. Estimating the SLR

3.2.1. Dissimilarity score

We first define a dissimilarity statistic (or score) that can be

computed for two documents (or collection of documents). We

selected the Kullback–Leibler divergence [26] to capture the

difference between the observed matrices of counts for two

writing samples, row by row (i.e., letter by letter). These

divergences are combined over letters using a weighted average,

ensuring that frequently observed letters (across both documents)

contribute more to the dissimilarity score. Details appear in

Appendix B.

At this point, it is important to emphasize that the procedure

that follows does not depend on the selection of this particular

score. A multitude of scoring methods can be used in its place (e.g.,

see [13] for a similar analysis using a similarity score based on

Pearson’s chi-squared statistic).

3.2.2. Database generation

To estimate the numerator and denominator densities of the

SLRs we need to obtain databases of scores generated in several

ways. For the numerator, we need a database of scores where both

x and y were obtained from documents written by the suspect. This

is a fairly straightforward matter in our case, and the reader is

referred to [13] for specific details. For the denominator, we need a

database of scores where x and y are generated from different

sources, according to the conditioning assumptions of SLR1, SLR2,

and SLR3.

3.2.2.1. Numerator database. Ideally, a database would exist

consisting of scores obtained by comparing ‘‘QD-like’’ documents

to the suspect’s template. It is unreasonable to expect a large

number of ‘‘QD-like’’ documents to be discovered over the course

of the investigation. For example, if the QD is a bank robbery note,

only in extremely rare cases would, a priori, a collection of such

bank robbery notes exist. One might suggest requesting the
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generation of a collection of ‘‘QD-like’’ documents from the

suspect; however, this might not result in the most representative

sample, especially in cases where the suspect is indeed the culprit,

as there is motivation to disguise his or her writing style. In

addition, the number of samples needed to accurately estimate the

distribution of scores would be prohibitive.

In light of these challenges, [25] proposed a method of

obtaining an arbitrarily large database (size denoted by N) of

‘within’ scores using a subsampling algorithm. Noting that nU
represents the number of characters in QD and n denotes the total

number of characters in the suspect’s template, the details of the

slightly modified2 algorithm employed appears below:

Subsampling Algorithm for Generating Numerator Database

For i ¼ 1; . . . ; N, where N denotes a sufficiently large number of

iterations,

1. Randomly divide the suspect’s template into two subsets,

with character counts nU and n � nU respectively. This is

done by randomly selecting a (starting) character from the

first n � nU characters. The selected character along with the

next nU � 1 characters is defined as the pseudo-QD and from

it we obtain the matrix of counts yi. The remaining characters

form a pseudo-template, from which we obtain the matrix of

counts xi.

2. Compare the two simulated writing samples, recording the

resultant score: Dðxi; yiÞ.

3.2.2.2. Denominator databases. Before the detailed algorithms are

presented, we first must address the challenge of obtaining a

representative collection of writing templates from potential

alternate sources. Recall, above we denoted this collection of

templates by EA as it is considered part of the evidence collected

which may differ from case to case and which, especially when EA is

of limited size, will have a significant impact on the estimation of

the score-based likelihood ratio. We make the simplifying

assumption that a large, representative collection of templates

exists. In future work, we intend to examine more practical

scenarios, and investigate the impact typical violations of these

assumptions have on the estimation procedure.

Once a large, representative collection of templates EA is

established, the mechanics of generating between scores for each

of the three denominator SLR interpretations can be detailed.

SLR1: The trace-anchored interpretation of Hd, tailored to

handwriting evidence, is ‘‘the evidence score arises from the

distribution of scores obtained by pairing the QD with a

template written by a random individual.’’ A detailed illustra-

tion of an adaptation of this method for the analysis of

handwriting evidence can be found in [13]. The specific

algorithm appears below.

Trace-anchored Algorithm for Generating Denominator Data-

base

Obtain a matrix of counts from the QD, denoted by yU. Then, for

i ¼ 1; . . . ; NA, where NA represents the number of writers in EA,

1. Select the ith writer from EA and obtain a matrix of counts

from that individual’s template, denoted by xi.

2. Compare the two writing samples, recording the resultant

score: Dðxi; yUÞ.

SLR2: The source-anchored interpretation is ‘‘the evidence

score arises from the distribution of scores obtained by pairing a

QD written by a random individual with the template written

by the suspect.’’ The specific algorithm appears below.

Source-anchored Algorithm for Generating Denominator Data-

base

Obtain a matrix of counts from the suspect’s template, denoted

by xS. Then, for i ¼ 1; . . . ; N, where N denotes a sufficiently large

number of iterations,

1. Select a writer from EA, and randomly select nU characters to

serve as the pseudo-QD. Obtain the matrix of counts, denoted

by yi.

2. Compare the two writing samples, recording the resultant

score: DðxS; yiÞ.

It should be noted that while [10] does hold xS fixed, they do not

proceed with their database generation in exactly the same

manner. They introduce an extra layer of complexity by generating

(what would be the equivalent of) multiple pseudo-QDs from

every writer in EA in order to generate NA different writer-specific

databases. Here, due to computational constraints, only one

pseudo-QD is generated per writer.

SLR3: The final interpretation considered, which avoids

anchoring all together, is ‘‘the evidence score arises from the

distribution of scores obtained by pairing a QD written by a

Fig. 1. Schematic of the quantification process.

2 In [25], a random selection of nU characters was chosen, whereas here nU

consecutive characters were chosen. We feel that the use of consecutive characters

best aligns with the natural writing that might appear in a QD.
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random individual with a template written by a different

random individual.’’ The specific algorithm appears below.

General Match Algorithm for Generating Denominator Database

For i ¼ 1; . . . ; N, where N denotes a sufficiently large number of

iterations,

1. Randomly select writer 1 from EA and randomly select a

document of size nU from his/her template to obtain a

pseudo-QD. Obtain the matrix of counts, denoted by yi.

2. Randomly select writer 2 (distinct from writer 1) from EA,

and obtain a matrix of counts from his/her template, denoted

by yi.

3. Compare the two writing samples, recording the resultant

score: DðxS; yiÞ.

3.2.3. Distribution estimation

Assuming one of the three denominator algorithms is selected,

two collections of scores have been obtained, one under the

prosecution’s hypothesis and one under the selected defense

hypothesis. The probability densities of those scores are rarely

known exactly and must be estimated. Denote those estimated

densities by ĝ. Normal probability plots of the ‘‘numerator scores’’

and the three sets of ‘‘denominator scores’’ indicated a normal

approximation was reasonable (results not shown). After obtaining

the sample mean and variance of our N (or NA for the trace-

anchored approach) generated observations, ĝ is defined to be a

normal distribution centered at the sample mean, with variance

equal to the sample variance estimate. Other methods were

considered (e.g. kernel density estimation, as employed in [13] and

histogram estimators) but both methods have been shown to

poorly model the tail behavior, leading to unwarranted extreme

values for the estimated SLR, denoted by dSLR, both when Hp is true

and when Hd is true. The true distributions of scores appear to have

light left tails and heavy right tails. Thus, the normal approxima-

tion seems the choice of least harm, as it tends to arrive at

conservative3 estimates fordSLR. Again, it is important to emphasize

that the procedure which follows does not depend on the selection

of this particular estimation technique for the probability

distribution of the scores.

3.2.4. Computing dSLR
The evidence score, d, is obtained by comparing the actual QD

(specifically the observed matrix of counts denoted by yU), with the

suspect’s template (specifically the observed matrix of counts

denoted by xS), using the modified Kullback–Leibler divergence as

detailed in Appendix B, DðxS; yUÞ ¼ d. The final step is to evaluate

the estimated distributions at that score: ĝðdjH p; IÞ and the correct

corresponding denominator, ĝðdjx; Hd1; IÞ, ĝðdjy; Hd2; IÞ, or

ĝðdj Hd3; IÞ, and then taking their ratio to obtain the estimated

score-based likelihood ratio, dSLR. The next section illustrates that,

as expected from the results shown in Appendix A, very different

results are obtained for each method.

4. Comparative study

In summary, three methods have been presented for obtaining

denominator databases used to estimate the SLR: trace-anchored,

source-anchored, and general match. These three databases will

necessarily result in three different estimates of SLR, denoted4 by

SLR1, SLR2, and SLR3. It seems prudent to investigate whether or not,

given the exact same evidence, the three estimates would differ

substantially. To that end, a comparative study was performed.

4.1. Writing samples

The set of writing samples used in the comparative study are

those described in detail in [25], collected by the FBI Laboratory

over a two-year period. Samples were collected from about 500

different writers. Each writer was asked to provide 10 samples (5 in

print and 5 in cursive) of a modified ‘‘London Letter’’ [27]

paragraph (533 characters long). In this study, only writing

samples in which the writer submitted all five cursive paragraphs

were included. This restriction results in 424 writers for a total of

2120 London Letter paragraph writing samples.

4.2. Simulation design

We performed the following simulation:

1. Randomly select two of the 424 writers, denoted by w1 and w2.

Define EA to be the remaining 422 writers in the database.

2. Obtain SLR1, SLR2, and SLR3 for two scenarios.

Hp True: The suspect is the culprit5 (w1 = suspect = culprit).

One of the five paragraphs written by w1 is randomly

selected, from which a string of size nU is randomly extracted

to serve as QD. We varied nU to be 20, 40, 60, 80, 100, and 150.

The number of scores, N, generated to estimate the

numerator distribution was set to 500.

Hd True: The suspect is not the culprit (w1 = suspect,

w2 = culprit). QD is obtained in the same manner as the first

scenario, except taken from w2’s template rather than w1’s.

The number of scores, N, generated to estimate the

denominator distribution for SLR2 and SLR3 was set to 500.

Repeat steps 1 & 2, 200 times, a computationally feasible number of

repetitions.

5. Results and discussion

The estimates obtained for the three methods were highly

variable. To illustrate, for one iteration of the above simulation

where Hp is true, values obtained were SLR1 = 1858, SLR2 = 1701,

SLR3 = 15. Another iteration resulted in the values SLR1 = 2370,

SLR2 = 6, SLR3 = 19.

This trend continues over many runs, which are summarized for

the Hp true scenario in Table 1. To facilitate the discussion, we

arbitrarily assigned a cutoff so that any SLR estimate greater than

100 leads to the conclusion ‘‘supports Hp’’.
6 Similarly for any SLR

estimate less than 1/100, we conclude ‘‘supports Hd’’. Finally, for

any intermediate values, no conclusion is reached. Results are

presented in Table 1. For a QD with 80 characters, we observed a

high rate (0.43) of disagreement among the three methods. That is,

43% of the time at least one of the three methods disagreed with

the others as to whether or not the evidence supports Hp, supports

Hd, or is inconclusive.

Disagreement rates generally increase as the QD gets larger, an

indication that most of the agreement that does occur for smaller

QDs is due to the majority of values falling in the inconclusive

3 Conservative in the sense that it protects against Type I errors (errs on the side

of innocence) as the estimated SLRs tend to be smaller than the true SLRs.

4 The ‘hat’ notation is suppressed for ease of presentation; however the reader

should be mindful that these are estimates of the true values of SLR1, SLR2, and SLR3.
5 Throughout, culprit refers to the individual who actually wrote the QD.
6 The authors are not implying that this is, in any way, a meaningful cutoff.
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range. More agreement occurs when Hd is true as seen in Table 2,

although there is still some disagreement (3% for nU = 80). From the

results in Table 1, it is clear the methods are differing substantially

in terms of the conclusions one would draw in cases where Hp is

true, and a more detailed analysis of the results is warranted.

Tippet plots (following the conventions described in [28]) are

shown for all three SLRs, on the natural log scale, in Fig. 2. The three

methods can be compared by the measurement of two ‘‘error

rates’’7 as described in [12]: RMEP B the rate of misleading

evidence in favor of the prosecution, i.e., when Hp is true

ðjlnðSLRÞj < 0Þ and RMED B the rate of misleading evidence in

favor of the defense, i.e., when Hd is true (jlnðSLRÞj > 0).

Before proceeding, the reader is reminded that samples were

obtained by convenience, all consisting of the exact same cursive

text, and under particularly mundane circumstances. These facts

most certainly prohibit generalization of results. In addition, the

reader must be mindful that selection of a different score or a

different distribution estimation technique may lead to very

different performances of the three methods. The authors are

currently investigating the robustness of the three approaches to

alternate scoring and estimation methods.

For each scenario considered, the rates of misleading evidence

for SLR1were far lower than the other two methods. A full listing of

the error rates appears in Table 3. Rates for SLR2 and SLR3 are nearly

indistinguishable. As expected, the rates decrease as the size of QD

increases.

The reporting of this type of error rate is less than ideal, as the

possibility of an inconclusive determination is fully ignored. An

approach that is more representative of the realities of forensic

casework is to impose symmetric cutoffs (e.g., h and �h on the

natural log scale) so that three intervals are created (e.g., (�1, �h],

(�h, h), and [h, 1)), corresponding to the three common

conclusions: exclusion, inconclusive, and source attribution (or

match). For a QD with 80 characters, these rates for all three

methods and both scenarios are presented in Table 4, for h = 4.61

(corresponding to SLR � 100).

The results in Table 4 illustrate that additional information is

gained from looking at all three intervals, compared to simply

reporting RMEP and RMED. The results show that when Hp is true,

Fig. 2. Tippet Plots for three SLR approaches, under two scenarios: Hp true (black lines) or Hd true (grey lines). Rates of misleading evidence are reported for SLR1, the method

exhibiting the smallest rates.

Table 2

Rates of agreement for the three SLR estimates when Hd is true. To disagree, at least

one of the three reached a different conclusion.

Agreement

Supports Hp Inconclusive Supports Hd

nU SLR > 100 1/100 < SLR � 100 SLR � 1/100 Disagreement

20 0.000 0.760 0.200 0.040

40 0.000 0.515 0.450 0.035

60 0.000 0.395 0.600 0.005

80 0.000 0.240 0.750 0.010

100 0.000 0.205 0.765 0.030

150 0.000 0.120 0.865 0.015

Table 1

Rates of agreement and disagreement for the three SLR estimates when Hp is true.

To disagree, at least one of the three reached a different conclusion.

Agreement

Supports Hp Inconclusive Supports Hd

nU SLR > 100 1/100 < SLR � 100 SLR � 1/100 Disagreement

20 0.000 0.830 0.005 0.165

40 0.070 0.610 0.005 0.315

60 0.125 0.395 0.000 0.480

80 0.200 0.370 0.000 0.430

100 0.240 0.305 0.000 0.455

150 0.330 0.215 0.000 0.455

7 One common critique of likelihood methods is that there is no ‘‘error rate’’ one

can report for a given case, as is required by the Daubert standard. This is due to the

fact that source attribution is not typically reported when LRs are employed.

However, in a simulated setting overall error rates can be computed by selecting

interval values between which match (or no match) statements might be made.

A.B. Hepler et al. / Forensic Science International 219 (2012) 129–140 135



both SLR2 and SLR3 tend toward the inconclusive range far more

often than SLR1.
8

6. Conclusions

Several methods for obtaining a score-based likelihood ratio for

handwriting evidence were illustrated, based on a categorical

representation of the feature data produced by the proprietary

quantification method developed by Gannon Technologies Group.

Regardless of the method selected, the results from Table 4 indicate

extremely low false match and false exclusion rates are attained

when a moderate conclusion threshold is set (jlnðSLRÞj � 4:61).

Since the categorical representation is an extreme simplification of

the entire set of feature data generated by Gannon’s quantification

method (which includes more detailed information, e.g. segment

lengths, angles, etc.), it may be that incorporating this additional

information would lead to improved performance. However,

preliminary investigations indicate that generating a score that

makes use of the full set of high-dimensional data and is also highly

discriminating is an elusive task (results not shown). While we feel

that these types of quantitative analyses may prove fruitful for

document examiners at some point, they should only be employed

after careful consideration of the inherently subjective decisions

the statistical analyst must make in order to calculate such

quantities.

Indeed, the primary purpose of this work is to highlight to the

forensic community at large, through an empirical study, that

score-based likelihood ratios are not the same as, and cannot be

interpreted as, the likelihood ratio. Although one should also note

that the comparison of Eqs. (2) and (3) suggest that there is a more

basic conflict between the two approaches for calculating the

‘‘value’’ of the evidence. This point has been largely ignored in

existing literature. Their interpretations must differ as SLRs are

considerably more subjective than LRs, in that an analyst must

select and defend (1) the similarity (or dissimilarity) score, (2) the

appropriate interpretation of the denominator, and (3) the

technique relied upon to estimate the numerator and denominator

distributions. Due to these points of subjectivity, SLR values must

be interpreted with far more caution than the LR based on a well-

defined and known probability model (e.g., simple one-contributor

DNA LRs).9

Some conclusions could be drawn from the various results

presented above as to the best SLR technique to use; however, the

authors resist as varying any of the subjective factors enumerated

above may affect the outcome. Also, innovative score-based

approaches have appeared in the literature since this work was

undertaken that also should receive consideration [18]. Due to the

nature of density estimation, the performance of all methods will

heavily depend on the size and representativeness of the database

EA. To date, no such handwriting database exists. The samples used

here are not representative of the general population and the

simulated evidence documents are not typical of QDs and

templates that might be obtained in real case work. As mentioned

earlier, our intention is to simply illustrate the feasibility of

obtaining an SLR for handwriting evidence, and to emphasize the

ambiguities that arise when calculating this value.

Appendix A. Score-based LRs with known distributions

In this segment, we intend to illustrate the theoretical differences

between the three SLRs and the LR by way of a simple illustration.

Suppose we have two items of evidence: x, a sample of known source

(e.g., suspect’s writing template, crime scene window) and y, a sample

of unknown source (e.g., bank robbery note, glass fragment obtained

from the suspect). Suppose it is known, as a general rule, that samples

of this type follow a normal distribution with some mean parameter.

Assume the variance parameter representing the within source

variability for samples of this type, denoted by s2
w, is fixed and known.

Also, assume the variance parameter for representing the between

source variability for samples of this type, denoted by s2
b , is fixed and

known.

In this example, we consider the sample x to be one observation

from a random process. Let X denote the random variable associated

with samples of this type, arising from this specific known source

(e.g., writing samples obtained from the suspect, fragments obtained

from the crime scene windows). For this illustration, suppose X

Table 3

Rates of misleading evidence in favor of the prosecution (RMEP) and in favor of the defense (RMED).

RMEP RMED

nU SLR1 SLR2 SLR3 SLR1 SLR2 SLR3

20 0.090 0.200 0.150 0.240 0.290 0.330

40 0.015 0.105 0.095 0.160 0.180 0.220

60 0.025 0.095 0.075 0.090 0.105 0.130

80 0.010 0.045 0.045 0.105 0.115 0.125

100 0.015 0.095 0.105 0.055 0.070 0.080

150 0.015 0.055 0.055 0.045 0.050 0.045

Table 4

Rates of exclusion, inconclusive, and match conclusions.

Hp true Hd true

Exclusion

(�1, �4.61]

Inconclusive

(�4.61, 4.61)

Match

[4.61, 1)

Exclusion

(�1, �4.61]

Inconclusive

(�4.61, 4.61)

Match

[4.61, 1)

SLR1 0.000 0.415 0.585 0.760 0.240 0

SLR2 0.000 0.710 0.290 0.750 0.250 0

SLR3 0.000 0.715 0.285 0.750 0.250 0

8 This trend can also be gleaned from careful consideration of the Tippet plots in

Fig. 1. The authors are simply cautioning against reporting RMEP and RMED as the

‘‘error rate’’ for any likelihood ratio method and illustrating a more meaningful

alternative.

9 Often when calculating a LR, the probability distribution is unknown and must

be estimated. In these cases, this estimation process induces subjectivity, just as

when estimating the SLR.
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follows a normal (Gaussian) distribution with mean mX, denoted

X � NðmX ; s2
wÞ.

We also consider the sample y to be one observation from a

random process. Let Y denote the random variable associated with

samples of this type, arising from this specific unknown source (e.g.,

writing samples the culprit could have left at the scene, fragments

from a specific, but unknown, window found on the suspect). Suppose

Y � NðmY ; s2
wÞ.

One final distribution must be defined, that of samples of this type

taken from some broader, ‘relevant’ population denoted by A. For this

illustration, suppose these arise from a normal distribution: NðmA; s2
AÞ

where s2
A ¼ s2

b þ s2
w.

Suppose we are interested in evaluating the evidence in relation to

the following two hypotheses:

Hp: x and y arise from the same source

Hd: x and y arise from different sources

Likelihood ratio

The likelihood ratio, assuming x and y are continuous measure-

ments, is defined by

LR �
f ðx; yjH pÞ

f ðx; yjHdÞ
;

where f denotes the joint probability density function for the

random variables X and Y. The assumptions above imply this will

be a bivariate normal density. Thus, in this scenario, we can obtain

a closed-form solution for the likelihood ratio.

Numerator

Under the numerator hypothesis Hp, the source of x and y are the

same (e.g., the suspect wrote the bank robbery note, the fragment

found on the suspect is from the crime scene window). Thus x and y

are random (independent) draws from the same distribution, so that

mY = mX. Therefore,

X � NðmX ; s2
wÞ;

Y � NðmX ; s2
wÞ:

Noting that the joint density for two independent normal random

variables is simply the product of their respective densities, we have

f ðx; yjH pÞ ¼
1

s2
w

f
x � mX

sw

� �
f

y � mX

sw

� �
;

where f denotes the standard normal probability density function.

Denominator

Under the denominator hypothesis Hd, the source of x and y are

different (e.g., someone else wrote the bank robbery note, the

fragment found on the suspect is from another window). A common

assumption made in the forensic literature is that the source of y is a

random individual selected from some relevant population, so that

mY = mA. Therefore, Y � NðmA; s2
AÞ.

Typically X and Y are assumed to be independent – that is,

information about the known source provides no additional

information about the unknown source. Therefore, the joint density

is again the product of their respective densities,

f ðx; yjHdÞ ¼
1

sAsw
f

x � mX

sw

� �
f

y � mA

sA

� �
:

Taking the ratio of f(x, yjHp) and f(x, yjHd), and noting the second

term of each cancel, we find

LR ¼
sAfððy � mXÞ=swÞ

swfððy � mAÞ=sAÞ
:

Score-based likelihood ratios

We now would like to compare the behavior of this likelihood ratio

with that of the three SLRs in the ideal case, where we have databases

that were of sufficiently large as to completely characterize the

relevant probability distributions. Before defining a (dissimilarity)

score we first note desired properties:

� If x and y are measurements from the same source, we expect the

score to be close to zero.

� If x and y are measurements from different sources, we expect

the score to be large.

One reasonable such score for two normal random variables, X and

Y, is the square of their differences. Thus define the random variable

D(X,Y) = (X � Y)2. Another added advantage of this particular score is

that we can exploit the following relationship between squared

normal distributions and a chi-squared (x2) distribution to obtain

exact expressions each SLR.

Property 1. Squared Normal Distributions

If T � N(m,s2), then
T2

s2
� X2

1;l

where X2
1;l denotes a non-central chi-squared distribution with

one degree of freedom and non-centrality parameter l ¼ m2=s2.

It is also true that for any random variable R with probability

density function (pdf) fR and scalar c > 0, the random variable

S = cR has pdf f S ¼ ð1=cÞ f Rðs=cÞ. Therefore

f
T2
ðtÞ ¼ 1

s2
x2
1;l

t

s2

� �
;

with non-centrality parameter l ¼ m2=s2.

To evaluate the evidence, now reduced to D(x, y) = (x � y)2 = d, via

likelihood ratio, in light of the two hypotheses defined above, Hp and

Hd, we are interested in

SLR �
gðdjH pÞ

gðdjHdÞ
;

where g denotes the probability density function for the random

variable D(X,Y) = (X – Y)2.

Numerator

All three SLRs make the exact same assumption regarding the

numerator probability distribution, namely Y represents an addition-

al independent draw from the distribution associated with the known

source. Thus to evaluate the numerator, we need to derive the

distribution of (X � Y)2 conditional on X = x, where Y follows a

NðmX ; s2
wÞ distribution. For the difference we find:

½ðX � YÞjX ¼ x� � Nðx � mX ; s2
wÞ:

Per Property 1, the numerator is then

gDjXðdjx; H pÞ ¼
1

s2
w

x2
1;l

d

s2
w

� �
;
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where l ¼ ðx � mXÞ
2=s2

w. The denominator of SLR will vary,

depending on which method you choose (SLR1, SLR2, SLR3).

SLR1 denominator

The method used to arrive at SLR1 assumes x is a randomly

selected sample from some relevant population. That is,

X � NðmA; s2
AÞ:

The method of SLR1 also assumes sample y is fixed and known.

Therefore we need to find the distribution gDjY(djy, Hd). We find

½ðX � YÞjY ¼ y� � NðmA � y; s2
AÞ:

Per Property 1, we find the denominator for SLR1 is

gDjY ðdjy; HdÞ ¼
1

s2
A

x2
1;l1

d

s2
A

  !
;

where l1 ¼ ðmA � yÞ2=s2
A. Thus,

SLR1 ¼
s2
Ax

2
1;lðd=s

2
wÞ

s2
wx

2
1;l1

ðd=s2
AÞ

:

SLR2 denominator

The method used to arrive at SLR2 assumes sample y is a randomly

selected sample from relevant population. That is,

Y � NðmA; s2
AÞ:

The method of SLR2 also assumes sample x is fixed and known.

Therefore we need to find the distribution gDjx(djx, Hd). We find,

½ðX � YÞjX ¼ x� � Nðx � mA; s2
AÞ:

Per Property 1, we find the denominator for SLR2 is

gDjxðdjx; HdÞ ¼
1

s2
A

x2
1;l2

d

s2
A

  !
;

where l2 ¼ ðx � mAÞ
2=s2

A. Thus,

SLR2 ¼
s2
Ax

2
1;lðd=s

2
wÞ

s2
wx

2
1;l2

ðd=s2
AÞ

:

SLR3 denominator

Here, we neither condition on x or y, and assume that x and y are

independent draws from the distribution associated with the relevant

population. Thus both X and Y follow NðmA; s2
AÞ with X and Y

independent. Therefore, their differences are distributed as:

X � Y � Nð0; 2s2
AÞ:

Per Property 1, we find the denominator for SLR3 is

gDðdjHdÞ ¼
1

2s2
A

x2
1

d

2s2
A

  !
;

where x2
1 denotes the central chi-squared distribution (l3 = 0).

Therefore,

SLR3 ¼
2s2

Ax
2
1;lðd=s

2
wÞ

s2
wx

2
1ðd=2s

2
AÞ

:

It is very important to note that each of the SLRs have a different

functional form. While here we are making many simplistic and

unrealistic assumptions, it stands to reason that the different

methods will necessarily provide different answers, providing some

insight into the results found in this work. SLR1 and SLR2 differ only in

their non-centrality parameters in the denominator.

We have laid out a framework where we can easily compare the

three SLRs to the LR, a luxury that is not possible in most realistic

applications. To help the reader comprehend the differences among

the SLRs themselves, and to highlight the deviations of each from the

LR (in this contrived example), a graphical illustration is provided

below.

Comparison

Rather than inspect the rather complex functional forms of each

ratio, we have deferred to illustrating their differences graphically. In

Fig. A1, we have plotted the values of SLR1, SLR2, SLR3 and LR given by

the formulas above, for various values of s2
b and s2

w, and for different

mA. The x-axis represents a range of possible measurements on

sample y. For clarity, we have eliminated one source of variability by

making the (unrealistic) assumption x always equals mX (i.e., the

measurement taken from the known source is always equal to the

true mean of its distribution).

Consider the first plot appearing in Fig. A1. Here, the mean of the

distribution from which the known source sample arises is 0 (i.e.,

mX = 0). The mean of the distribution from the relevant population is

�8 (i.e., mA = �8). The black solid line represents the likelihood ratio.

As expected, the likelihood ratio takes on positive values as the

measurement from the unknown sample (y) approaches the mean of

the known source. It continues to increase as the value of x increases,

up until it becomes less and less likely to have come from the known

source.

Moving on to the SLRs, it is important to note that the

functional form of SLR1 is changing along with y, as the non-

centrality parameter in the denominator changes with y. This is

stated here to emphasize that we are not looking at the functional

form of SLR1, just the evaluation of SLR1 at each point y. Each of the

SLRs peak at y = 0, which is a marked deviation from the LR. There

is one segment (y < �5) where both SLR1 and SLR3 are in fact larger

than the LR implying that under these conditions, those SLRs are

overstating the value of the evidence in favor of the prosecution

(though all values are extremely small, thus providing very strong

support for the defense hypothesis). However, in most other places

where log(LR) > 0 (LR > 1) the SLRs are understating the value of

the evidence, in some cases drastically so. For example, when

y = 2.5, we find LR = 3.05 	 1013 (log(LR) = 13.48) whereas

SLR1 = 1.23 	 107, SLR2 = 1.60 	 102, and SLR3 = 1.34 	 10�2. This

shows that, at least in this contrived situation, some amount of

evidential value is not being adequately captured by these three

methods. It is interesting to note that SLR2 closely approximates

(although slightly overestimating) the LR when y < 0, and this

property is evident in each graph.

The properties displayed in the first graph are certainly the most

extreme. In most cases, the SLRs are fairly well-behaved in

comparison to the LR, particularly so when the between variability

is much larger than the within variability (looking down the rows in

Fig. A1). The approximations are also well behaved when the

alternate population mean approaches the mean of the known source

(looking across the columns in Fig. A1). In general, SLR3 tends to

underestimate the value of the evidence, very rarely producing log

values greater than zero. Several additional interesting features can

be observed in these plots, and rather than enumerate them here, the
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reader is encouraged to study them closely. In addition the R10 code

for this analysis is made freely available as an online supplement to

this manuscript.

Appendix B. Dissimilarity score

In this segment, we describe in detail the dissimilarity score used

in this study. Suppose we have observed matrices of counts for two

writing samples, denoted by x and y. For a given letter l (or a given row

of x and y), define

vli ¼
xli þ ð1=IlÞ

xl
 þ 1
and tli ¼

yli þ ð1=IlÞ

yl
 þ 1
;

where xl
 ¼
PIl

i¼1 xli; yl
 ¼
PIl

i¼1 yli, and i = 1, . . ., Il indexes the

distinct isocodes used to write the lth letter in either x or y. Then

the dissimilarity score for a given letter l is defined as

Dðxl; ylÞ �
XIl

i¼1

tliln
tli
vli

� �
;

except when Il = 1 (i.e., when only one isocode is used to write

letter l in either x or y), in which case Dðxl; ylÞ � 0.

To combine across all letters, l = 1, . . ., L, define a set of weights,

ll /

1ffiffiffiffiffiffiffiffiffiffi
1=xl


p
þ

ffiffiffiffiffiffiffiffiffiffi
1=yl


p ; minðxl
; yl
Þ � 1

0; otherwise

8
<
: ;

such that
PL

i¼1 ll ¼ 1. Thus, a letter only receives weight when it

appears at least once in both x and y. The combined score over all

letters is then

Dðx; yÞ ¼
XL

i¼1

llDðxl; ylÞ:

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.forsciint.2011.12.009.
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