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ABSTRACT: A writer’s biometric identity can be characterized through the distribution of physical feature measurements (“writer’s pro-
file”); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is
segmented into basic graphical forms (“graphemes”), which are “skeletonized” to yield the graphical topology of the handwritten segment. The
graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived
from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies
heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction
of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this
article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive
documents.
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The most common task of automated writer identification is a
closed-set biometric identification, which assumes that the writer
of a document of unknown writership is one of the writers con-
tained within a reference database and modeled by the biometric
system. Closed-set identification is distinct from a fundamental
forensic writer identification problem, which is to verify that a
document of questioned writership came from a specific person
(in some instances, to the exclusion of all other possible writers).
In this article, we will use the term “writer identification” to be
synonymous with closed-set biometric identification.
A writer’s biometric identity can be characterized through the

distribution of measurements of physical features, with this distri-
bution commonly referred to as a “writer’s profile.” This article
describes features based on skeletonized handwritten text and a
method, isomorphic graph classification (see Methods for details),

to provide a unified context for effectively using these features in
computer-based writer identification. The features and methods
described in this article are substantially similar to those used in
the proprietary product FLASH ID� (Sciometrics LLC, Chantilly,
VA, USA). Because FLASH ID� is proprietary, we cannot pro-
vide specific details of the system’s functions; however, the care-
ful reader should be able to implement a similar system based on
the information in this article.
This method does not use these features for character recogni-

tion purposes; that is, the developed method uses the measured
features to indicate who wrote a document, rather than what is
written on it. The goal of this article is to demonstrate the com-
bination of topology and geometry as an effective method for
organizing features based on skeletons of graphemes. Even sim-
ple features like distances and angles can be very effective in
identifying the writer of a document if there are meaningful
ways to organize and compare them.
The skeletons and exemplars of the handwriting in this article

are taken from cursive writing samples in the “FBI 500” dataset;
these handwriting samples, which were collected by the FBI
Laboratory to facilitate studies such as this, contain cursive and
handprinted exemplars of a modified London Letter from volun-
teer writers. The original London Letter was first published by
A.S. Osborn in 1929 (1) and was designed to obtain a standard
text that contains two or more examples of each letter of the
Roman alphabet in upper and lower case, all of the numerals
and some various punctuation marks. The FBI modification
added two sentences at the end of the paragraph that included
specific letter combinations of interest such as “qu,” “th,” “ll,”
and the special characters “&” and “$.” The full text of the para-
graph collected for the FBI 500 dataset and the complete hand-
written paragraph from the writer from which the examples were
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taken is given in Appendix A. Many of the exemplars in the fig-
ures of this article are taken from the writings of one writer from
the FBI 500 dataset.
We will describe features of handwriting in terms of topol-

ogy and geometry. Topology refers to the connectedness pat-
tern of the edges of the skeleton of a grapheme and leads to
the concept of isomorphic graph classification. Topological
properties are not changed when a grapheme is stretched,
moved, rotated, or otherwise distorted without changing its
connectedness. Geometry refers to actual physical measure-
ments derived from the locations of the pixels in the skeleton
of the grapheme. Geometric features do change if the image is
distorted. The purpose of the two types of information is that
the topological information gives a meaningful frame on which
to place the geometric information so that effective compar-
isons of graphemes can be made.
Handwriting can be segmented into graphemes, which can be

done manually or using an automated process. Graphemes are
simply collections of the pixels of an image of a handwritten
document and may correspond to character types (letters or
numerals), or may consist of parts of characters or parts of
groups of characters. Graphemes can then be “skeletonized” or
“thinned” by one of many available algorithms (e.g., see (2)).
Skeletonization leads to a loss of information about the thickness
of the writing, but that information can be recovered as a sepa-
rate set of features at a later point if desired. A skeleton is a set
of curves that are each one pixel wide. Fig. 1a illustrates skele-
tons for four graphemes corresponding to characters taken from
the writings of a particular individual. These skeletons and all
exemplars of the handwriting in Fig. 1 are taken from the writ-
ings of one anonymous writer from the “FBI 500” dataset.
A skeleton leads immediately to a configuration of edges

and nodes. A node is a point at which lines or pathways inter-
sect, branch, or terminate, and edges are the lines between two
nodes. In Fig. 1a, the leftmost two skeletons each have four
nodes and three edges with the same topology (isomorphic) to
a “T” shape. The two skeletons on the right each have six
nodes and five edges isomorphic to an “H” shape. Although
each pair of skeletons is isomorphic, the shapes of the charac-
ters are quite different. Shape is described easily here, namely
the character type: the two leftmost shapes are “u” and “n”,
and the two rightmost shapes are “m” and “u”. However, note
that the features based on the skeleton of the first (left) “u” do
not correspond to features based on the skeleton of the second
(right) “u” because the topological structures of the two charac-
ters are different.
In the more general situation where graphemes do not corre-

spond to character types (Fig. 1b), a concept of “shape code” is
required. In Fig. 1b, the first grapheme is composed of parts of
the “sin” in “business,” the second grapheme corresponds to
parts of “he” in “there,” and the third grapheme corresponds to
parts of “re” in “there.” Each skeleton in Fig. 1b is isomorphic
to an “H” shape. However, although the features based on the

second and third skeletons might be comparable (although cer-
tainly many would take very different numerical values), the first
skeleton has a fundamentally different shape and its features
would not be comparable to the features of the other two skele-
tons (see Methods for a way of describing shape for graphemes
that do not correspond to characters).
This article demonstrates the isomorphic graph class as an

effective method for organizing features based on skeletons of
graphemes. Even simple features can be very effective in identi-
fying the writer of a document; we present both simple and more
complex features in Results and Discussion.
This article is organized as follows: Background contains a

review of some features used by other researchers. Methods pro-
vides a thorough description of isomorphic graphs classes; illus-
trates graphemes, their associated isomorphic graphs, and shape
codes; and describes how graphemes can be created correspond-
ing to characters (which may require analyst input) or created
from very small bits of handwriting called protographemes
(which requires no analyst input). Results and Discussion con-
tains descriptions of features based on skeletons for edges and
for loops, illustrates features selected by a statistical procedure
to compare one type of character for two different writers, and
describes the performance of classifiers based on a subset of the
features described in this article and compares that performance
with the results of other researchers. Conclusions summarizes
the results and suggests future research in this area.

Background

Review of Features Used by Other Researchers

Various types of features derived from image analysis, pattern
recognition techniques, graphemes, and forensic document exam-
ination have been used for automated writer identification. For
coverage of early approaches, please refer to (3). In our descrip-
tions below, we have used the language and descriptions of
the researchers we cite. Because different authors may have
used the same term to refer to somewhat different concepts, we
refer the reader to the original cited documents for clarification
of details. In all cases below, “grapheme” refers to a collection
of pixels. As shown in Fig. 1a,b, these pixels may or may not
form a recognizable character.
Writer identification methods may use features measured on

words, lines, and whole documents. One approach measures fea-
tures of single words based on morphological waveform coding
(4). Others focus on features of individual lines by studying their
connected components, loops, and contours (5,6). Features of
individual lines also serve as input to hidden Markov and Gaus-
sian mixture models to identify writers (7,8). Partial and whole
document images also offer features: several techniques use them
with morphological waveforms (9), fractal analysis (10), Zipf’s
law (11), Gabor filters and correlation measurements (12), and
chain codes (13) to identify writers. Additionally, distributions

FIG. 1––Sample skeletons for graphemes (a) based on characters and (b) not based on characters.
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of contour directions and run-lengths of black or white pixels
from entire documents yield features (14–16).
At a finer level of detail, features may come from graphemes.

The distribution of common graphemes defines features in sev-
eral studies: Bensefia et al. (17–19) introduce the use of individ-
ual graphemes as features. Rather than measuring features
summarized from an entire block of text, they find invariant
classes of allographs by clustering graphemes according to corre-
lation measurements of their pixels. These “writer invariants”
from across a population of writers then define a feature space.
Bulacu (16), Bulacu and Schomaker (20–22), and Schomaker,

Franke and Bulacu (23) also build on the use of graphemes
introduced by Bensefia et al. (17–19) to form allographic fea-
tures. Instead of writer invariants, they construct grapheme code-
books by clustering the graphemes from an entire population of
writers. The graphemes in the codebook then define the bins of
a grapheme emission probability density function.
Forensic document examiners have identified elements for dis-

criminating handwriting (24,25). Srihari et al. (26) adapt similar
features to arrive at computational measurements that they label
as macro- and micro-features. Macro-features capture aspects
such as darkness, slope, slant, and height at a global level.
Micro-features pertain to images of allographs and include gradi-
ent, structural, and concavity measurements. Srihari et al. (27)
develop style features similar to micro-features measured on
whole words and pairs of letters.
Leedham and Chachra (28) present new computational fea-

tures of handwritten digits for identifying writers. Leedham
and Pervouchine (29) advance computational features of the let-
ters “d,” “y,” and “f” and the grapheme “th” based on those used
in forensic document examination, which relate to distances and
angles of individual graphemes. Walch and Gantz (30,31) intro-
duce features of graphemes described by isomorphic graph
classes as illustrated in this article; the features in this article rep-
resent extensions of these early prototypes used by Walch and
Gantz.
The choice of features and the choice of analysis method are

closely tied. Selected features may be successful for one analysis
method but unsuccessful for others. Some researchers summarize
the grapheme level features at the document level using distribu-
tions (16–23). Others create a score for each grapheme and sum
those scores to obtain an overall document score (26–36,38).
The connection between choice of features and analysis method
is demonstrated in more detail below.

Methods

The methods described below are used in systems by the
authors of this article to organize and characterize graphemes.
The concepts of isomorphic class and geometric class are the
basis of these systems. The initial part of the current section is
spent developing these two concepts. Once graphemes can be
compared within a particular topological class and geometric
class, then features can be defined and measured as shown in

the rest of the section. The graphemes can then be compared
using those features.

Isomorphic Graphs

Recall that skeletons are sets of lines one pixel in width.
These lines can be connected in many different ways, but always
form what is called a planar graph in mathematics. The lines in
such graphs are called edges and places where lines terminate,
or three or more lines intersect are called nodes. Sample skele-
tons from actual handwriting are given in Fig. 1a,b.
Graphs are called isomorphic if they have the same connected-

ness pattern among the nodes. This pattern is not changed if the
graphs are stretched, moved, rotated, or otherwise distorted. We
will describe an isomorphic graph class by giving an exemplar
schematic to which all members of the class are isomorphic.
Five potential schematic skeletons for a class with four nodes
and three edges are given in Fig. 2a. The nodes and edges have
been drawn in an exaggerated fashion to draw attention to the
fact that bends in edges, even severe ones, do not create nodes.
Each skeleton in Fig. 2a is isomorphic to the basic “T” shape of
the first schematic.
Figure 2b contains four potential schematics for a class with

six nodes and six edges. All schematics in Fig. 2b are isomor-
phic. This figure illustrates the fact that edges may move inside
or outside a perceived loop and still maintain the connectedness
pattern. It also illustrates that the connectedness pattern is not
affected by whether lines are very straight or highly curved.
Properties like curvedness are geometric and are captured as fea-
tures (see Results and Discussion). Handwriting will be seg-
mented into graphs, which are then assigned to isomorphic
classes (Fig. 3).
It may be desirable to insert “pseudo-nodes” (analogous to knots

in a spline model) into a grapheme to give better feature measure-
ments. Such pseudo-nodes may be particularly useful for “S”-
shaped graphemes (see Appendix B for details on pseudo-nodes).
Using isomorphic graph classes is a critical step in organizing

graphemes so that feature measurements on graphemes may be
compared in a meaningful manner. However, such comparisons
require that the nodes of a graph be numbered in a consistent
manner so that the geometric measurements have meaning. For
instance, a feature like “the angle from node 1 to node 2” would
be useless unless a consistent and organized set of rules for
numbering nodes was used; a set of such rules is provided in
Appendix C. The set of rules in Appendix C uses both topologi-
cal aspects of connectedness and geometric aspects of location
and angle to number the nodes so that comparisons can be
made. Using the rules in Appendix C, Fig. 4a,b shows the node
numbering for the skeletons in Fig. 1a,b.

Creation of Graphemes

Graphemes may be segmented from handwritten material cor-
responding to characters. This can be done manually by an

FIG. 2––Examples of isomorphic schematic skeletons with (a) four nodes and three edges and (b) six nodes and six edges.
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analyst or automatically by computer algorithms. Because com-
puter algorithms for character recognition are not completely
accurate, the character segmentations described in this article
were done manually. Figure 3a,b illustrates character segmenta-
tions from the first two words of the London paragraph shown
in Appendix A. The isomorphic graph schematics are also given,
because we must know that to make meaningful comparisons of
features.
Manual segmentation is time-consuming and expensive; a

fully automated method for creating graphemes is needed to
implement an automated handwriting identification system. The
outline of such a method is given below. The process begins by
taking each line of the handwritten document and oversegment-
ing it into small contiguous “chunks” of pixels called pro-
tographemes. Any automated process or set of rules that
creates these protographemes can be used. One set of rules is
described in Bucalu (20); that set of graphemes could poten-
tially be tuned to lead to more and smaller chunks of pixels
and thus create protographemes. Figure 3c illustrates the output
of one such automated process yielding 21 protographemes for
the word “Athens” from the paragraph in Appendix A. Fig-
ure 3d illustrates 41 protographemes created from the words
“Zermott St.” Different protographemes would be created using
different algorithms, so it is important to use the same algo-
rithms throughout the process, both for training and for testing
documents.
Once protographemes have been created, graphemes are made

by combining contiguous protographemes. Decisions about how
many consecutive protographemes to combine, whether to allow
overlapping graphemes, whether to allow crossing white space,

and other details can be made by the designers of any system.
Different decisions in these matters will lead to different perfor-
mance of the resulting system. Figure 3e,f illustrates one way to
create graphemes from the protographemes in Fig. 3c,d, in
which each grapheme is composed of between three and seven
protographemes. Again, the isomorphic graph schematics are
given for each resulting grapheme, because that information is
crucial to continued analysis of the graphemes. These figures
demonstrate that the resulting graphemes will seldom correspond
to characters.
In addition to combining the protographemes to create gra-

phemes, it is also possible to generate additional graphemes from
embedded forms within graphemes. Small features such as
“spurs” and “holes” within grapheme edges may or may not be
significant, and it is often not possible to determine their impor-
tance at the grapheme level. By “toggling” certain small edges
related to these artifacts, new graphemes can be created that have
been simplified by removal of the artifacts. In this context, “tog-
gling” means systematically removing certain small edges. The
rules for toggling are to set a threshold size for the edges to be
considered and to establish a maximum proportion of the overall
grapheme that can be removed (or toggled “off”). For instance, all
edges less than five pixels in length can be chosen as candidates
for removal and the maximum amount of the overall graph to be
eliminated by edge removal can be set to 20%. Given these
parameters, various combinations of the selected pixels will be
systematically toggled “off” (removed) yielding new simplified
graphemes that are no more than 20% smaller than the original.
Toggling is especially useful in instances where material is sparse
such as postal addresses and short notes.

FIG. 4––Graphemes (a) from Fig. 1a and (b) from Fig. 1b, with node numberings and shape codes.

FIG. 3––Graphemes and isomorphic schematics from the words (a) “Our” and (b) “London”; protographemes created from the words (c) “Athens” and (d)
“Zermott St”; (e) graphemes created from the protographemes in (c); and (f) graphemes created from the protographemes in (d).
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Once graphemes are created, the isomorphic graph class
determined, and the nodes numbered, features can be com-
puted. However, meaningful comparisons still cannot be
made unless the shapes of the graphemes are taken into
account. The assignment of shape is discussed in the next
section.

Graphemes and Shape

Even when two skeletons belong to the same isomorphic
graph class, their features may not lend themselves to meaning-
ful comparisons. Consider the skeletons in Fig. 1a: the leftmost
two belong to the same isomorphic graph class (schematic “T”)
and the rightmost two belong to the same isomorphic graph
class (schematic “H”). Nevertheless, we would not want to
compare their features. Similarly, all three skeletons in Fig. 1b
belong to the same isomorphic graph class (schematic “H”),
but the first has a fundamentally different shape than the other
two. A method of assigning a shape class to each grapheme is
needed.
For graphemes based on characters, the most obvious and fun-

damentally useful concept of shape is simply the character type
(letter of the alphabet with case, numeral, or symbol). For exam-
ple, in Fig. 3a,b, the graphemes correspond to the character types
“O,” “u,” “r,” “L,” “o,” “n,” “d,” “o,” “n,” respectively. Only the
two “n”s would be in the same isomorphic shape class group (ab-
breviated isoshape group). All others would be in unique isoshape
groups to be compared with other characters in the same groups.
For graphemes based on protographemes, shape must be

determined in some other manner. One way is to use a “shape
code,” which can be created in many ways. A set of rules that
will lead to a unique shape code using an alphabet of four letters
corresponding to directions of the compass is given in
Appendix D.
The shape codes (and numbered nodes) for the four gra-

phemes from Fig. 1a are shown in Fig. 4a. These graphemes are
based on characters, so there is no need to compute shape codes
for them. However, this figure is included to aid the reader in
understanding how shape codes are created. Figure 4b contains
the resulting shape codes (and the numbered nodes) for the three
graphemes from Fig. 1b. Because these graphemes were created
automatically from protographemes, these shape codes are essen-
tial in allowing for meaningful comparison of features among
writers. As noted previously, the shape codes for the second and
third graphemes are the same, but different from the shape code
for the first grapheme.
Given that features will now be compared only for graphemes

with the same isomorphic graph class and the same shape class
(either character type or shape code), we can now define the fea-
tures that can be used for automated writer identification.

Features Based on Skeletons

There are many very simple features that may be computed
once certain key points within the skeleton have been defined.
Distances between points, angles between points, offsets (hori-
zontal and vertical) between points, and sines and cosines (which
are scaled offsets) between points may all be easily computed.
All distances and offsets are measured in units of pixels; angles
are measured from 0° to 360° with 0° being “east” and angles
increasing counterclockwise.
There are two classes of key points we consider: quarter

points and centroids. Quarter points are based on counting

pixels in the skeleton from the lower numbered node to the
higher numbered node and then using the rules in Appendix E
to find the quarter points, which divide the pixels into four
parts. The centroids are just the “centers of mass” of the pixels
and are computed by simple averaging of the pixel locations in
each direction (x or y) for each edge and for the entire gra-
pheme.
Figure 5 contains the letter “n” from Fig. 1a with (a) the

quarter points for each edge marked and with (b) the centroids
for each edge and the entire grapheme indicated. There are 17
key points even for this simple form; this means there are 136
pairs of points, each of which could lead to one distance, one
angle, two offsets, a sine, and a cosine, yielding 816 potential
features of this type. For graphemes with more edges, there are
correspondingly more such potential features. A user may opt
not to use (or not even to compute) some of these features, but
there is a rich list from which to choose.

Features Based on Bezier Fits

Bezier curves are used extensively in computer graphics and
typography. A Bezier curve is a particular type of smooth curve
that can be used to approximate the path of a skeleton. The
advantage of a Bezier curve is that it has a precise mathematical
form, which can be used to compute values, such as tangents
and curvature measures, for the curve at important points (e.g.,
quarter points defined previously). These values, which are exact
for the Bezier curve, then yield an approximate value for the
pixels to which the curve was fitted. Appendix F gives some
details of how the curves are fit and how tangents and curvature
values are calculated from the fitted curve.
Figure 6a shows Bezier curves fit to the edges of a letter “a”

taken from the paragraph in Appendix A. To show potential
variations on the basic technique, the curves were fit to the
entire edge in the left-hand diagram and separately to halves of
the edge in the right-hand diagram. Note that the curves are
smoother in the left-hand diagram but, in the right-hand diagram,
the curves correspond more closely to the pixels. The user may
opt to use either type of fit as appropriate.
Important information about the trajectory of an edge may be

found by computing the tangents to the Bezier curve at the quar-
ter points and recording the angles of these lines. Fig. 6b shows
the tangent lines for the Bezier curves in the left-hand diagram
of Fig. 6a. The values of the formula for mathematical curvature
can be recorded for each quarter point as well as the average
value over all pixels in the edge. These features give numerical

FIG. 5––Key points within a skeleton illustrating (a) the quarter points for
each edge marked and (b) the centroids for each edge and the entire gra-
pheme indicated.
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values to the concept of “curvedness,” which can be input into
statistical procedures.

Features for Loops

For loops, we consider several features that attempt to ascertain
the orientation: the curvature, the roundness, and the size of the
loop. Figure 7a shows the word “Lloyd” written by the writer of
the paragraph in Appendix A and contains four loops and two
pseudo-loops (loops 4 and 6 are composed of two and three edges,
respectively and are, therefore, not true loops). However, we
include the two pseudo-loops so that we may illustrate the differ-
ent values that result for our features for different shaped loops.
Our first two features measure the orientation (slant) and

eccentricity (lack of roundness) of the loop, both of which are
computed by considering the coordinates of the pixels in the
loop skeleton as bivariate statistical data and computing the prin-
cipal components (see (40)) for that data. The angle of the vector
of the first principal component gives the orientation of the loop.
A measure of eccentricity is given by the following score:
e1 ¼ ð1� kmin=kmaxÞ

1
2 (see (40)). This score takes on a value of

zero when the figure is perfectly symmetric and a value
approaching one as the loop degenerates into a straight line. As

a perfect square shape is symmetric, we give a further measure
of lack of roundness; this is computed by taking the centroid of
the pixels in the loop and computing the distance from the cen-
troid to each pixel.
An alternative measure of eccentricity, e2, is computed by

taking the ratio of the standard deviation of the distances
divided by the mean of the distances all multiplied by the
square root of three. This score again takes a value of zero for
a perfect circle and approaches one as the loop degenerates to a
straight line.
We can also fit a Bezier curve to the loop and compute the

average value of the mathematical curvature for the pixels in the
loop. We scale that value by dividing by the number of pixels in
the loop to eliminate the scale dependence of the mathematical
curvature described in Appendix F. Figure 7b gives enlargements
of the curves in Fig. 7a, along with the fitted Bezier curves and
the principal component axes. Table 1 contains the values of the
scores for each feature for each loop.
The angle of the first principal component can illustrate the

slant of the loops. The eccentricities show clearly that Loop 3 is
least round and Loop 6 is most round. The mean curvatures are
greatest for the smallest loops, whereas the scaled mean curva-
tures show that Loop 6 (which has the least proportion of pixels

FIG. 6––(a) Bezier curves fit to edges of a letter “a” and (b) tangents to Bezier fit at quarter points using entire edge fit.

FIG. 7––Illustration of (a) the six “loops” taken from the word “Lloyd” and (b) the loop feature details. Loops 4 and 6 are not true loops; they are combina-
tions of two and three edges, respectively, and are included for illustrative purposes only.
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where the Bezier curve is almost straight) has the greatest mean
curvature, and Loop 3 (which has the greatest proportion of pix-
els where the Bezier curve is almost straight) has the least mean
curvature.

Results and Discussion

The features defined above can be used as a foundation of a
statistical procedure for writer identification. We illustrate such a
statistical procedure in this section.

Feature Selection by Statistical Procedure

The large number of features presented in the previous section
yield many potential features to be used in automated writer
identification. Therefore, some sort of statistical procedure must
then be used to select the most useful features. This section con-
tains an example of the features selected by one particular algo-
rithm for two writers, neither of which is the true writer of the
paragraph in Appendix A (or of the examples presented from
that writer’s paragraph). We are restricting this example to just
graphemes of the lower case letter “n” written using the “T”
isomorphic schematic (see Fig. 3b for two examples of similar
graphemes and Fig. 5a).
Figure 8 contains 12 examples taken from each of Writer 1

and Writer 2. Note that there is variability in the graphemes
within the same writer, but there will also be some differences
between the two writers in the measurements of some geometric
features (e.g., distances and angles).
The statistical procedure that selected the features illustrated

below is described in some detail in Appendix G. The selected
features using the grapheme from Fig. 5a (not written by either

Writer 1 or Writer 2 so as not to bias the interpretation) are
illustrated in Fig. 9. Feature 1 refers to the angle from the cen-
tral node to the “mid-pixel” of edge 1–2 and hence measures the
“arch” of that edge. Larger angles (closer to 180°) describe an
edge that is “flatter,” and smaller angles (closer to 90°) describe
an edge that is “more arched.” Feature 2 refers to the angle from
the central node to the centroid of edge 1–4. As this edge is
quite straight, this feature measures the “slant” of this edge. Lar-
ger angles (closer to 270°) represent more “vertical” edges, and
smaller angles (less than 270°) represent more “slanted” edges.
Feature 3 refers to the distance from node 2 to the centroid of
the entire grapheme. This feature is related mostly to the hori-
zontal distance from node 2 to that centroid and hence to the
length of edge 1–2; however, it can also be increased by edge
1–3 being longer. Feature 4 refers to the number of pixels in
edge 1–3 and hence is a direct measure of its length.
Table 2 contains the mean values of the four selected features

in the training data for each writer, and Table 3 gives the
interpretation of those means. It must be noted that these
means only indicate tendencies. There is much variability
among the graphemes for each writer, so there is no absolute
separation between writers for any of these features. The val-
ues for each feature in the training data are presented in
Fig. A4a in Appendix G, which illustrates graphically the
variability in these graphemes. The reader should note that the
tendencies described in Table 3 can be seen in the graphemes
in Fig. 8.
Using the statistical procedure described in Appendix G, 22

of the 29 test graphemes (75.9%) for Writer 1 are correctly
assigned, and 55 of the 67 test graphemes (82.1%) for Writer 2
are correctly assigned. Five graphemes were assigned to neither
writer. An example of a test grapheme written by Writer 1 that
is incorrectly assigned to Writer 2 is shown in Fig. 10a. An
example of a test grapheme written by Writer 2 that is incor-
rectly assigned to Writer 1 is shown in Fig. 10b. By comparing
these graphemes to those in Fig. 8, we see that the statistical
procedure yields results consistent with predictions using visual
examination of these graphemes.
Figure 10c contains two graphemes that were not assigned to

either writer by our method. The first is an example of an appar-
ently anomalously written grapheme, whereas the second is
caused by the “whisker” of the skeleton due to the small ink
blob (which might be from “pen drag”). Given that no person
writes exactly the same way twice (intrawriter variability) and a

TABLE 1––Loop feature values for the loops in Fig. 7b.

Feature Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 6

Angle of
first PC

37.26° 57.96° 82.41° 57.00° 58.30° 47.80°

Eccentricity
1(e1)

0.84 0.77 0.91 0.81 0.84 0.67

Eccentricity
2 (e2)

0.44 0.38 0.64 0.40 0.45 0.25

Mean curvature 0.0906 0.1565 0.0380 0.0687 0.0468 0.0718
Scaled mean
curvature

0.0240 0.0282 0.0161 0.0247 0.0209 0.0323

FIG. 8––Twelve examples of the letter “n” using the “T” isomorphic schematic taken from writing samples from each of Writer 1 and Writer 2.
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relatively small sample of handwriting, it is not surprising to
find a few instances of graphemes that may not be assigned to
the true writer. However, writer identification with this method

is not based on a single grapheme, but the totality of the geo-
metric features measured in the handwriting sample.

Writer Identification Performance

The previous part of this section worked with only one topo-
logical class and one geometric class with only two writers. We
have also tested using many writers, many topological classes
and many geometric classes. We have tested the features
described above and the statistical procedures described in
Appendix G (with modifications) and presented the results else-
where (see 30–39). We summarize them here.
Walch et al. (34) found that, in testing documents using a sub-

set of the features above, many statistical methods could give rea-
sonable performance, but our method using pairwise comparisons
(which we call the “Competitive Matrix” method), gave the best
performance. In a test (34) using 100 possible writers, all 194 test
documents are classified correctly. In another test using 300 pos-
sible writers, all 590 test documents are classified correctly. In
both cases, a 100.0% correct assignment rate is obtained.
The data in Saunders et al. (39) are based on graphemes that

were manually segmented to correspond to characters, and only
using characters that were written using subset of basic isomor-
phic schematics were used. Walch et al. (36) used graphemes
based on computer segmentation; shape codes were used in
place of character type to divide graphemes into “like–with-like”
comparisons. In that study, there were 100 possible writers with
200 test documents, and all but one document tested was classi-
fied correctly (a 99.5% correct assignment rate).

Conclusions

This article has introduced a system of features based on iso-
morphic graph class and shape that can be useful in automated
handwriting identification. Many of the features described herein
have been used in some part by other researchers, although not
in the framework of topological and geometric class. Our work
embedded these features using a framework based on topological
classification and geometric classification of graphemes into a
system; this system allows meaningful “like-with-like” compar-
isons of similar features among different writers.
The exploitation of features also is integrally related to a sta-

tistical procedure that can select the important features for com-
paring any two writers. We have given an example of features
selected for two particular writers that shows that the features
selected by a statistical procedure can be observed visually. We
have described results that demonstrate that the integrated system
of features and statistics can produce excellent identification
results. The features presented in this article may used by other

FIG. 9––Illustration of four features selected by a statistical algorithm to
compare Writer 1 and Writer 2. Feature 1 is the angle from node 1 to sec-
ond quarter point of edge 1–2. Feature 2 is the angle from node 1 to cen-
troid of edge 1–4. Feature 3 is the distance between node 2 and the centroid
of entire grapheme. Feature 4 is the number of pixels in edge 1–3.

TABLE 2––The mean values of the selected features in the training data.

Feature Number
Mean Value of Feature

Writer 1 Writer 2

1 125.63° 162.22°
2 243.44° 234.43°
3 17.83 pixels 20.42 pixels
4 50.84 pixels 48.28 pixels

TABLE 3––Interpretation of the writer differences for the selected features
in the training data.

Feature
Number

Feature Mainly
Refers To

Referred Edge Tends to be

For Writer 1 For Writer 2

1 Edge 1–2 More “arched” “flatter”
2 Edge 1–4 More “vertical” More “slanted”
3 Edge 1–2 “shorter” “longer”
4 Edge 1–3 “longer” “shorter”

FIG. 10––Illustration of examples of the letter “n” from (a) Writer 1 misclassified to Writer 2; (b) Writer 2 misclassified to Writer 1; and (c) Writer 1 classi-
fied to neither writer.
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researchers in conjunction with other types of statistical systems
to achieve improved identification results in automatic handwrit-
ing identification.
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FIG. A1—(a) The full text of the modified London Letter used in collection of the “FBI 500” dataset and (b) a sample paragraph written by one volunteer
writer from that collection.

Appendix A: Modified London Letter

Figure A1a contains the full text of the modified London Let-
ter that was used in collection of the “FBI 500” dataset. Fig-
ure A1b contains a sample paragraph written by one writer from

that dataset. Several examples are taken from this paragraph to
illustrate various features and principles.
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Appendix B: Insertion of “Pseudo-Nodes”

For some graphemes with a sigmoid shape, it may be useful
to insert pseudo-nodes into the skeleton so as to make the fea-
tures more useful. The letter “s” and the numerals “2,” “3,” and
“5” may benefit from such insertions. Figure A2a shows an
example of such a pseudo-node and illustrates a rule for adding
such pseudo-nodes. This rule states that if the line connecting
the end nodes crosses the skeleton, place a pseudo-node at the
point or points of crossing.
Shapes with more complicated recurving may benefit by

including a pseudo-node even if the line connecting the end
points does not cross the skeleton. Figure A2b illustrates one
such possible situation with the solid pseudo-node. Other compli-
cated situations may benefit from adding more than one pseudo-
node. Figure A2b also illustrates this situation with the hollow
pseudo-nodes (or all three pseudo-nodes). Once pseudo-nodes
have been added to a skeleton, they should be treated exactly like
the original nodes for all purposes in the analysis including the
assignment of the grapheme to an isomorphic class.

Appendix C: Description of Rules for Numbering Nodes

The following set of rules yields a consistent rubric for
numbering nodes in any grapheme

1 Find the highest degree node or nodes (the degree of a node
is the number of edges entering it).
a If only one such node exists, number it 1. Go to step 2,

else go to step 1b.
b If more than one such node exists, find the leftmost one.

If a tie still exists, take the bottommost one. Number that
node 1. Go to step 2.

2 Find the highest degree node or nodes remaining.
a If the degree of the node or nodes is greater than one, then

number them by the angle they make with node 1. Begin
by considering the direction west and proceed by number-
ing clockwise. In case of a tie, assign the lower number to
the node closer to node 1. Iterate step 2.

b If the degree of the node or nodes equals one, then divide
them into groups based on the number of the node to which
they connect. Following the order of the resulting groups,
within each group, measure the angle from the central node
of that group to the fifth pixel of the edge connecting the
central node to the node of degree one. Begin by consider-
ing the direction “west” and proceed to number the nodes of
degree one clockwise. If all vertices are numbered, stop.

Appendix D: Rules for Assigning Shape Codes to Graphemes

The shape codes we propose are based on the angles from
node 1 to each numbered node in succession. Angles are mea-
sured counterclockwise starting with “due east” as 0°. The code

for a given angle then corresponds to “compass direction.”
Hence, angles between �45° and 45° become “E,” while those
between 45° and 135° become “N,” those between 135° and
225° become “W,” and those between 225° and 315° become
“S.” Figure A3 illustrates this correspondence.
A given grapheme will then have a shape code consisting of

the letters ENWS of length one less than the number of nodes in
the grapheme.

Appendix E: Rules for Determining Quarter Points of an
Edge

The following rule is used to determine the coordinates of the
quarter points for an edge. Because an edge is by definition one
pixel wide, the pixels can be consecutively numbered from 1 to
n (where n is the number of pixels in the edge) beginning at the
lower numbered node. The goal is to divide the interval 1 to n
into four equal parts and then find the corresponding coordinates
of pixels. The zeroth quarter point is defined to be the point
numbered one. The fourth quarter point is the point numbered,
n. It remains to assign the first, second, and third quarter points.
Consider the ratios (n + 3)/4, (2n + 2)/4 and (3n + 1)/4, and
divide the interval from 1 to n into four equal parts. We now
need the coordinates of the points indexed by those fractions in
the edgeline.
Suppose that one of the above ratios has a decimal value of

w. d, where w is the whole number part and d is the decimal
part. The desired x coordinate is just the following weighted
average: (1-d) xw + dxw+1. The y coordinate is computed simi-
larly. For example, suppose that n = 22, which leads to the
ratios 6.25, 11.5, and 16.75, thereby dividing 1–22 into four
equal parts. The x coordinates of the five quarter points are x1,
0.75x6 + 0.25x7, 0.5x11 + 0.5x12, 0.25x16 + 0.75x17, and x22
respectively.

Appendix F: Fitting a Bezier Curve to an Edge or Loop—
Tangents and Curvature

A Bezier curve fit to a collection of pixels is obtained in the
following way: number the pixels consecutively from 1 to n
(where n is the number of pixels in the edge or loop). In the case
of an arc, begin at the lower numbered node. In the case of a loop,
begin where the loop intersects its edge. If the loop does not inter-
sect an edge, begin at its lowest point. Now create a parameter t
= (i – 1)/(n – 1), where i is the pixel number. Now regress the x
and y coordinates separately on the Bernstein polynomials (see
(41)) of degree d (where d is usually chosen to be 3 or 4). One
can choose whether or not to force the Bezier curves to go
through the end points of the arc or beginning/ending point of the

FIG. A2—Examples of (a) a pseudo-node and (b) a more complicated
pseudo-node situation.

FIG. A3—Correspondence between angles and shape codes.
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loop. In the work presented here, we used degree four curves,
which were forced to go through the end points.
If we have a parametric curve of the form{x (t), y (t)}, we can

find the slope of the tangents to that curve using the relationship
dy=dx ¼ _y=_x, where _y and _x represent differentiation by t (see
(42)). To obtain the tangents at the quarter points, we only need
to evaluate at dy/dx at t = 0, 1/4, 2/4, 3/4, and 1. A quantity
called mathematical curvature is inversely proportional to the
radius of a certain tangent circle and its formula is given by

C ¼ j _x€y� _y€xj=ð _x2 þ _y2Þ32 (details are given in (42)). C can be
evaluated at the quarter points or evaluated at the values of t
corresponding to each pixel and then averaged.

Appendix G: Details of Statistical Use of Features

The statistical procedure that was used to select the four fea-
tures described in “Feature Selection by Statistical Procedure”
has been described in previous work by the authors (see (30–
36,38)). We began by working with a set of 199 features (a sub-
set of the many potential features described in Methods). We
then used an iterative process to select ten features that best
compared Writer 1 to the 99 other writers. (This is done by
comparing Writer 1 pairwise via stepwise linear discriminant
analysis to each other writer and finding the most commonly
used features selected in these comparisons.) The resulting ten

features are called Writer 1’s “Biometric Kernel.” We then used
stepwise linear discriminant analysis to select the four features
used to compare Writer 1 with Writer 2.
The dotplots in Fig. A4a show that the tendencies described

in Tables 2 and 3 are subject to a great deal of variability. How-
ever, statistical procedures are constructed to deal with just such
variability. The canonical variable used by linear discriminant
analysis to assign test graphemes to writers is a scaled, weighted
combination of the four feature measurements. A dotplot of the
canonical variable scores for the 86 test graphemes is given in
Fig. A4b. There remains a great deal of variability, but the sepa-
ration of the scores for the two writers is much more apparent
than in the raw feature data.
We used the following rule to assign writership to a test gra-

pheme. If the canonical variable score was closer to Writer 1’s
canonical mean in the training data (�1.60) and within �2 of that
mean, then assign the grapheme to Writer 1. If the canonical vari-
able score was closer to Writer 2’s canonical mean in the training
data (+0.80) and within �2 of that mean, then assign the gra-
pheme to Writer 2. Otherwise, assign the grapheme to neither wri-
ter. In terms of Fig. A4b, these rules translate to the following
rules: if the canonical score is to the left of the double line and
inside the dashed red lines, assign to Writer 1. If the canonical
score is to the right of the double line and inside the dashed green
lines, assign to Writer 2. Otherwise, assign to neither writer.

FIG. A4—Dotplots of (a) the training data for each selected feature by writer and (b) the test data for the canonical variable by writer.
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These rules lead to erroneously assigning the three graphemes
of Writer 1 whose dots are to the right of the double line (in the
light green box) and the 11 graphemes of Writer 2 whose dots
are to the left of the double line (in the light red box). The five
graphemes in the light blue boxes on the extremes of the figure
are assigned to neither writer.
We used a rule that allowed assignment to neither writer in the

example even though we knew that all graphemes are written by

one writer or the other. Removing the option would result in four
of the five unassigned graphemes in this example being assigned
to the correct writer. Hence, this option is not advantageous for the
results in this example. However, in other applications of this basic
methodology, such as comparing all pairs of writers from 100 or
300 writers, it is most likely that a test grapheme is written by nei-
ther of the pair of writers. Therefore, having the option of assign-
ing to neither writer is very advantageous in those situations.
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