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ABSTRACT: The proposition that writing profiles are unique is considered a key premise underlying forensic handwriting comparisons. An
empirical study cannot validate this proposition because of the impossibility of observing sample documents written by every individual. The goal of
this paper is to illustrate what can be stated about the individuality of writing profiles using a database of handwriting samples and an automated
comparison procedure. In this paper, we provide a strategy for bounding the probability of observing two writers with indistinguishable writing pro-
files (regardless of the comparison methodology used) with a random match probability that can be estimated statistically. We illustrate computation
of this bound using a convenience sample of documents and an automated comparison procedure based on Pearson’s chi-squared statistic applied to
frequency distributions of letter shapes extracted from handwriting samples. We also show how this bound can be used when designing an empirical
study of individuality.
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Forensic document examiners (FDEs) perform handwriting com-

parisons for writer identification and verification. One underlying

proposition of such comparisons is that ‘‘No two people write

exactly alike’’ (1, p. 130); each individual incorporates distinguish-

able characteristics into his ⁄her handwriting regardless of the partic-

ular style or system of handwriting learned originally. If one

conceptually views an individual’s entire body of natural handwrit-

ing as his ⁄her writing profile, then this proposition can be restated

as no two individuals have the same writing profile.

This proposition that each individual has a distinct writing profile

has been debated (2). In general, the uniqueness of writing profiles

cannot be validated empirically. To do so would require access to

documents written by each individual in the relevant population

and possibly a large number of documents from each individual—

sufficient to completely characterize that individual’s writing pro-

file, including the natural variation in the individual’s handwriting.

One approach to measuring the ‘‘degree’’ of individuality of

writing profiles in a population is to consider the chance of observ-

ing two individuals with the same writing profile. The goal of this

paper is to illustrate what can be stated empirically about the prob-

ability of observing two individuals with indistinguishable writing

profiles in a given population using a database of handwriting sam-

ples and an automated comparison procedure that is restricted to

two decisions: either a ‘‘match’’ decision (two writing samples were

written by the same individual) or a ‘‘no-match’’ decision (two

writing samples were written by different individuals).

For this study, we utilize an automated comparison procedure

because it permits the rapid processing of large quantities of writing

samples, not because it ‘‘models’’ the comparison techniques

utilized by experienced FDEs. There are significant differences

between such automated comparisons and comparisons conducted

by FDEs, and because of these fundamental differences, any char-

acteristics of automated comparisons described in this paper cannot

be related to comparisons made by FDEs. For example, an auto-

mated procedure almost exclusively relies on a limited set of

(quantifiable) features that can be extracted from scanned images

of writing samples. On the other hand, there are some subjective

characteristics and features exploited by FDEs that can be extracted

only from the original documents, as well as quantifiable features

comparable to those used by automated comparison procedures.

Another difference is that an FDE is not limited to ‘‘match’’ (i.e.,

identification) or ‘‘no-match’’ (i.e., elimination) decisions. An FDE

may reach a no conclusion opinion because the writing samples are

not sufficient to conclusively determine whether or not the two

writing samples were written by the same individual, or an FDE

may offer qualified opinions regarding the likelihood that a particu-

lar writer prepared the questioned document (3). As mentioned by

Morris (1), ‘‘For limited amounts of writing, the FDE may not

be able to absolutely determine which was written by a particular

writer (Crane 1999:39–45)’’ (p. 131).
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An automated comparison procedure that is restricted to

‘‘match’’ ⁄ ‘‘no-match’’ decisions will not always produce the correct

decision; it is subject to two types of errors:

• False Match Error: Two writing samples from different individ-

uals may be declared to ‘‘match.’’

• False No-Match Error: Two writing samples from the same

individual may be declared ‘‘no match.’’

One characteristic that contributes to such errors is the almost

exclusive reliance of an automated procedure on a set of features

that can be quantified; it ignores subjective characteristics that can

be exploited by an FDE for identification and verification. Purdy

(4, p. 71) in his discussion of modern developments in identifica-

tion of handwriting states:

The discriminating eye and sharp mind of the FDE are still

required to see and correctly interpret physical evidence in

handwriting cases. Only through logical reasoning and the

application of scientific principles by a qualified expert can

the authorship of a contested handwritten document be accu-

rately established.

Another ‘‘source’’ of the errors associated with an automated

comparison procedure is the natural variation observed in handwrit-

ing: ‘‘No one person writes, exactly, the same way twice’’ (1,

p. 130). Each individual demonstrates some natural variation in

his ⁄her handwriting from one document to another. Lindblom (5,

p. 13) attributes this variation to:

... no repeated act is always accomplished with exactly the

same results, regardless of whether it is produced by a

machine or human effort. For instance, an individual’s hand-

writing is made up of a complexity of habitual patterns that

are repeated within a typical range of variation around the

master patterns....

Harrison (6) also describes the natural variation in handwriting

as resulting from variations around a writer’s ‘‘master pattern’’ (p.

299). Other researchers, such as Bulacu and Schomaker (7), have

described a writer as a ‘‘stochastic generator of ink blobs shapes, or

graphemes’’ (p. 703).

These characterizations of the natural variation in handwriting

suggest conceptualizing a writing profile as a probability distribu-

tion across documents generated by that individual, rather than as a

static characteristic of an individual, such as a fingerprint or DNA.

(Although an FDE incorporates the totality of the information into

the comparison, he ⁄ she may not explicitly construct probability dis-

tributions to characterize an individual’s writing. The FDE’s com-

parison includes the consistency and quality of the characteristics

and the presence or absence of characteristics, not solely the fre-

quency with which they occur.)

Viewing an individual’s writing profile as a probability distribu-

tion suggests that the errors associated with an automated compari-

son of writing samples cannot be completely avoided, regardless of

the comparison procedure used. One cannot reconstruct an entire

probability distribution from a small number of samples from that

distribution, but only observe some of its properties—namely how

frequently certain characteristics occur. So, any writing samples

with significant and similar probability of occurring under two dis-

tinct writing profiles will make it improbable that an automated

procedure will correctly classify every pair of writing samples on

the basis of a finite number of features extracted from each. Also,

the stochastic nature of writing profiles implies that the ‘‘best’’

information any automated comparison procedure can provide, even

one not limited to ‘‘match’’ ⁄ ‘‘no-match’’ decisions, is a likelihood

that a specific individual wrote a given document.

Even though an automated comparison procedure cannot be made

error free, it nevertheless can tell us something about the individual-

ity of writing profiles via its ability to discriminate among writers

within the relevant population. An automated comparison proce-

dure’s discriminating power can be characterized by its associated

random match probability (RMP). The RMP of interest in handwrit-

ing analysis is the chance of randomly selecting two individuals from

some relevant population and then randomly selecting two writing

samples, one from each individual’s available body of handwriting,

that are declared to ‘‘match’’ on the basis of the chosen comparison

procedure. The ‘‘smaller’’ the RMP, the ‘‘better’’ the automated com-

parison procedure is for identification and verification.

The RMP is one measure of the false match error rate of a com-

parison procedure. Intuitively, the RMP summarizes the result of

all possible pairwise comparisons of writing samples known to be

from different writers via the ratio of the number of comparisons

in which the writing samples are indistinguishable to the total num-

ber of comparisons. So, the RMP can be viewed as an average

probability—the rate of false match errors averaged over all possi-

ble writers that may be compared and all types of writing samples

that may be available for comparison. Also, viewed conditionally

on the size of the writing samples selected for comparison, it mea-

sures the effectiveness of the comparison procedure applied to a

particular size of writing sample at distinguishing between individ-

ual writers.

The RMP is associated with Stoney’s (8) first question: ‘‘What is

the probability of encountering two corresponding objects (gener-

ally)?’’ (p. 475). Stoney rejects this question in relation to the eval-

uation of evidence, as it does not depend upon the specific

evidence. He recommends against the use in court of values of

average probabilities, such as the RMP, because they do not pro-

vide a measure of the value of the evidence in a particular case.

However, he goes on to say that average probabilities do have rele-

vance in deciding what techniques are best to use routinely across

a variety of evidence and as a general measure of the worth of the

type of evidence under consideration. Aitken (9, p. 52) similarly

characterizes an RMP:

If background data exist, the task of the forensic scientist

in determining the rarity of any items with which he is

presented is greatly eased. However, there are situations, as in

hair analysis, where such background data do not exist. Some

idea of the value of the evidence in these situations may be

obtained by considering all possible pair-wise comparisons of

items known to be from different sources. The ratio of the

number of comparisons in which the items are indistinguish-

able to the total number of comparisons provides a measure

of the value of the evidential process in general, though not

of the value of the evidence in a particular case. The ratio

is known as an average probability. The use of values of

average probabilities in court is not recommended, but they

do provide a general measure of the worth of the type of

evidence under consideration.

Stoney’s (8) fourth question: ‘‘What is the probability of encoun-

tering a corresponding object, given the crime object?’’ is the one

he concludes to be the ‘‘fundamental relevant question in evaluating

associative evidence’’ (p. 477). This probability treats the observed

evidence as fixed and considers only the probability of encounter-

ing this specific evidence among randomly selected individuals.
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Estimation of this probability and its relationship to likelihood

ratios are the subject of ongoing research and future publications.

As mentioned previously, there is another type of error associ-

ated with automated comparison of writing samples. If two writing

samples generated by the same writer are declared to ‘‘not match,’’

then a false no-match error has occurred. The random no-match

probability (RNMP) is one measure of the false no-match error rate

of a comparison procedure. It is defined as the probability of ran-

domly selecting a writer from the population and then selecting

two writing samples at random from the selected individual’s body

of handwriting that fail to ‘‘match’’ on the basis of the chosen com-

parison procedure. Heuristically, the RNMP is related to the

‘‘expected’’ ability of the comparison procedure to correctly identify

the writer of a questioned document.

Both the RMP and the RNMP depend upon:

• The automated comparison procedure used, specifically the

method used to compare features and the set of features being

compared.

• The relevant population of writers (more specifically, writing

profiles) generating the writing samples being compared. Some

individuals’ writing profiles are harder to distinguish between

than others.

• The size of the writing samples (measured say by the number of

characters) being compared. Comparisons between larger writing

samples from different writers should result in false match errors

less frequently than when comparing smaller writing samples.

In this paper, we describe how the RMP associated with an auto-

mated comparison procedure links the concept of handwriting indi-

viduality to empirical studies of a comparison procedure. One

approach to validating the concept of handwriting individuality is to

measure the ‘‘degree’’ of individuality of writing profiles in a popula-

tion using the chance of observing two individuals with the same

writing profile. As discussed in the next section, this measure of the

degree of individuality is bounded above by the RMP associated with

any comparison procedure. The RMP can be estimated on the basis

of quantifiable features extracted from a collection of writing samples

from a sample of writers from the relevant population. Therefore,

although an empirical study cannot ‘‘prove’’ the individuality of

handwriting, it potentially can be used to show that the chance of

observing two individuals with the same writing profile is very small.

This paper is organized as follows. First, we define another

useful concept, biometric individuality, and relate it to both the

chance of observing two individuals with the same writing profile

and the RMP associated with a comparison procedure. As dis-

cussed in the next section, estimating the biometric individuality

will be our ultimate goal because it is the ‘‘best’’ measure of the

degree of individuality possible when using a given comparison

procedure. Then, we propose an estimator of an upper bound on

the biometric individuality. We illustrate the computation of this

upper bound using a convenience sample of documents from 98

individuals. We end with an illustration of how the upper bound on

biometric individuality can be used to design an empirical study to

provide an upper bound on the degree of individuality of writing

profiles of a specified size, assuming that writing profiles are

indeed unique or at least as rare as the specified upper bound.

Methods

Biometric Individuality

In this paper, we are considering the degree of individuality of

writing profiles in a population as measured by the probability of

randomly selecting two (different) individuals with the same writ-

ing profile.

Jain et al. (10) relate the issue of individuality in biometrics to

the question: ‘‘What is the probability that the biometric data origi-

nating from two different individuals will be sufficiently similar?’’

(p. 131). Although this question is somewhat vague—what does

‘‘sufficiently similar’’ mean in the context of biometric data—it has

been used in fingerprint individuality studies (11), where the indi-

viduality of a population is defined as the chance of observing two

indistinguishable fingerprints selected from a population at random.

For handwriting analysis, the question posed by Jain et al. (10)

suggests defining the biometric individuality (of a population with

respect to a comparison procedure) as the probability that two

(different) randomly selected writers from the population have

indistinguishable writing profiles with respect to the comparison

procedure being used. Intuitively, two writing profiles being indis-

tinguishable mean that one concludes that the handwriting of two

writers looks the ‘‘same’’ after observing their entire body of

handwriting. Specifically, two writing profiles being indistinguish-

able mean that the probability that two randomly selected writing

samples ‘‘match’’ is the same whether: (i) the two writing samples

are selected from the writing profile of the first individual, (ii) the

two writing samples are selected from the writing profile of the

second individual, or (iii) one writing sample is selected from each

of the two writing profiles.

Biometric individuality is an important concept to study in rela-

tion to the individuality of handwriting because it represents the

‘‘best’’ measure of the degree of individuality possible when using

a given comparison procedure. If handwriting is indeed unique in

the sense that every individual has a unique writing profile, then

the probability of randomly selecting two writers with the same

writing profile is zero. However, practically, there might be some

individuals whose handwriting cannot be distinguished using a

given comparison procedure based on a given set of measured fea-

tures. So, it would be useful to know how rare it is to encounter

two writers with ‘‘practically’’ indistinguishable writing profiles,

which is what the biometric individuality measures. Also, the bio-

metric individuality is always greater than the probability of ran-

domly selecting two writers with the same writing profile. So, any

upper bound on it will also provide an upper bound on the rarity

of matching profiles, which we are using as a measure of the

degree of individuality of writing profiles in general.

Biometric individuality is also related to the RMP (Fig. 1). Bio-

metric individuality refers to the probability of a random match of

FIG. 1—Three probabilities related to measuring the individuality of writ-

ing profiles.
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writing profiles, whereas the RMP refers to the probability of a ran-

dom match of writing samples. So, generally, the RMP is larger

than the biometric individuality. However, as the size of the writing

samples being compared increases, the RMP gets closer to the bio-

metric individuality. In other words, once randomly selected writing

samples are of sufficient size, there is negligible difference between

the performance of the comparison procedure applied to distinguish-

ing individual writing samples and individuality of writing profiles.

Therefore, the biometric individuality is ‘‘close’’ to the RMP

associated with large writing samples, which can be estimated on

the basis of a representative collection of large writing samples

from a representative sample of writers. So, if one can identify a

comparison procedure with a very, very small associated RMP

when applied to large writing samples, such a comparison proce-

dure can be used to provide an upper bound that is close to the true

rarity of matching writing profiles. However, even when the writing

samples are not ‘‘large’’ and regardless of the comparison procedure

used, the RMP still provides an upper bound on the rarity of

matching writing profiles in general.

Comparison Procedure

Bolle et al. (12) define a biometric matcher as a system that

takes two biometric data samples and returns a score indicating

their similarity. A biometric matcher can be used as the basis for

comparing two writing samples. A matcher takes (the scanned

images of) two writing samples, converts these writing samples to

a set of features, and then computes a score based on these fea-

tures, which measures the similarity of the handwriting in the two

writing samples.

With the introduction of a threshold value, a biometric matcher

becomes a comparison procedure producing ‘‘match’’ ⁄ ‘‘no-match’’

decisions. A pair of writing samples is declared to ‘‘match’’ if the

similarity score exceeds the predefined threshold value. Otherwise, a

‘‘no-match’’ decision is declared for the two samples. An alternative

to computing similarity scores is to determine distances or dissimi-

larities between features from two writing samples. Using a distance

or dissimilarity score, two writing samples are said to ‘‘match’’ if the

associated distance score is equal to or below a predefined threshold

value, and ‘‘not match’’ if the distance exceeds the threshold value.

The Document Forensics Laboratory at George Mason Univer-

sity is currently investigating several biometric matchers. One of

these matchers, which we will refer to as the Chi-Squared Classi-

fier, uses a Pearson’s chi-squared similarity score that was specifi-

cally designed for verification problems and that can take

advantage of knowing what letter is being written, when such infor-

mation is available. Details of calculating this similarity score asso-

ciated with comparing any pair of writing samples (from the same

writer or different writers) can be found in Saunders et al. (13).

The relative importance of the false match and false no-match

errors can be used to choose a threshold value to use with a bio-

metric matcher. For illustration in this paper, we choose the thresh-

old to fix the rate of false no-match errors at some prespecified

constant level, say 1%, based on the theoretical properties of the

similarity score. The similarity score associated with the Chi-

Squared Classifier is related to an approximate p-value (13). This

implies that the distribution of similarity scores resulting from the

comparison of two documents has approximately a uniform distri-

bution when applied to two randomly selected writing samples

from the same individual, regardless of the size of the two writing

samples being compared. So, theoretically, the 1% RNMP thresh-

old for the Chi-Squared Classifier is 0.01 regardless of the size of

the writing samples being compared.

If it is not possible to determine theoretically a threshold based

on controlling the level of the RNMP for a specific biometric

matcher, one would need to estimate such a threshold. This estima-

tion may be complicated if the biometric matcher responds to the

quality and ⁄or amount of information contained in the biometric

samples being compared. Furthermore, if the estimation of the

threshold to control RNMP is dependent on the RMP, such as

when controlling the equal error rate, the standard error of the

RMP will need to be incorporated into this estimation strategy.

Estimating RMPs

As discussed previously, the RMP for any comparison procedure

provides an upper bound on the rarity of matching writing profiles

in general. So, to bound the degree of individuality of writing pro-

files, one can compute a point estimate and an upper confidence

bound for the RMP.

Suppose the data available for estimating the RMP consist of

one writing sample per writer (possibly from combining multiple

documents) from each of N randomly selected writers from the rel-

evant population. Results of all N (N ) 1) ⁄2 pairwise comparisons

(i.e., for each pair of writers, compare their associated writing sam-

ples and record whether or not the pair ‘‘match’’) can be used to

construct both a point estimate and an upper confidence bound for

the RMP.

A natural point estimator of the RMP is the number of matches

divided by the number of pairwise comparisons, which is

N (N ) 1) ⁄2. To construct an upper confidence bound for the

RMP, one needs to know the standard error of the estimated RMP,

which is not just a function of the number of matches among

the pairwise comparisons. Further, the standard error is not of

the ‘‘standard form’’: population standard deviation divided by the

square root of ‘‘sample size’’ because the outcomes of pairwise

comparisons are dependent. (The outcome of comparing Document

1 to Document 2 is related to the outcome of comparing Document

1 to Document 3, and so on.) So, our point estimate is based on

averaging dependent ‘‘observations,’’ instead of the more familiar

averaging of independent ‘‘observations.’’ However, because this

estimator of the RMP is in a class of statistics called U-statistics of

degree 2, we can use the general form of the standard error of a

U-statistic (14) to construct a consistent estimator of the standard

error of our estimator of the RMP, and thus a (Wald-type) 95%

upper confidence bound for the RMP of the form: point estimate

plus 1.645 times the standard error estimate (15).

The formula given in Wayman (15) for the upper confidence

bound cannot be used when there are zero observed matches. For

interval estimation of a proportion, Agresti and Coull (16) illustrate

that an adjusted Wald interval obtained after adding two ‘‘suc-

cesses’’ and two ‘‘failures’’ to the sample yields coverage probabili-

ties close to the nominal confidence levels. We conducted a small

simulation study to investigate the coverage probability when a

similar type adjustment is made to the Wald interval given in Way-

man (15). We added one ‘‘match’’ and one ‘‘no match’’ resulting in

the formula for the 95% upper bound in the case of no observed

matches to be: 4.65 ⁄ [(N + 1)(N + 2)]. Our preliminary investiga-

tions suggest that this adjustment yields coverage probabilities close

to the nominal confidence levels.

Results

In this section, we use a set of handwriting samples collected by

the FBI Laboratory to illustrate the statistics and probability inequal-

ities discussed earlier. These writing samples, which we refer to as
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the FBI data set, form a convenience sample, not a random sample

representative of some relevant population. The FBI data set is used

in this study only to illustrate the proposed approach to bounding

the probability of observing indistinguishable writing profiles in a

given population using a database of handwriting samples and an

automated comparison procedure, not to make a statement about the

degree of individuality in any specific population.

FBI Data Set

Cursive documents were collected by the FBI Laboratory from

100 volunteers at the FBI, training classes, various forensic confer-

ences, and from friends and family members over a 2-year period.

Each volunteer was asked to provide multiple cursive samples of a

modified London Business Letter (‘‘London Letter’’; [13]). For

illustration of the proposed techniques in this paper, we required

larger writing samples, so two documents were combined to pro-

duce writing samples of roughly 1000 characters for each writer.

However, two of the volunteers failed to provide multiple cursive

samples, so samples from only 98 volunteers are used in the fol-

lowing computations.

The particular text of the modified ‘‘London Letter’’ was selected

because it gives a reasonable representation of the frequencies of

lowercase letters in English writing and contains at least one

instance of each uppercase letter and of each of the digits 0

through 9. The modifications, which were made by an FDE, con-

sisted of the addition of two sentences at the end of the ‘‘London

Letter’’ to incorporate some occurrences of specific letter combina-

tions (e.g., ‘‘th,’’ ‘‘qu,’’ ‘‘ll’’).

Following is a brief description of how the writing samples were

quantified; more details about the processing can be found in

Walsh and Gantz (17). Scanned images of the writing samples

were segmented into individual characters manually. Then, the pix-

els in each segmented character were ‘‘skeletonized,’’ and an auto-

mated process was used to represent each ‘‘skeletonized’’ character

by a mathematical graphical isomorphism whose internal structure

can be enumerated by a code, referred to as an isocode. Mathemat-

ical graphs describe the ‘‘skeletonized’’ character in terms of nodes,

edges, and their relative connectivity. The isomorphic part of the

name refers to the fact that the edges of the graph can be ‘‘unbent,’’

reoriented, or resized and leave the pattern of nodes, edges, and

their relative connectivity unchanged. This proprietary method of

handwriting quantification, developed by Gannon Technologies

Group, was originally applied to optical character recognition for

handwriting, but has since been shown to provide a powerful foun-

dation for biometric identification using handwriting (17).

The process used to extract features from each of the writing

samples ultimately then associates each segmented character in the

modified ‘‘London Letter’’ with a letter and an isocode, thus reduc-

ing each document to the frequency of isocodes used to write each

letter. This allows representing each writing sample as a cross-

classified table of letter by isocode (13).

As mentioned previously, any number of quantification systems

could be used to study handwriting individuality. Each of these

methods will possess a different biometric individuality and in turn

provide a different upper bound on the degree of individuality in a

population.

Estimated Upper Bound

We applied the procedure described in the last section to the

FBI data set to compute an upper bound on the RMP. Using the

Chi-Squared Classifier (13) on the samples from 98 writers, there

are no matches at the 1% RNMP threshold of 0.01, which implies

a 95% upper confidence bound on the RMP of 0.00047.

As pointed out previously, this upper bound on the RMP is also

an upper bound on the biometric individuality associated with the

Chi-Squared Classifier, and also an upper bound on the rarity of

matching writing profiles. This bound is probably not as small as

would be needed to support court testimony of an individualization

made by an FDE. Additionally, owing to the previously discussed

differences between such automated comparisons and comparisons

conducted by FDEs, it does not ‘‘measure’’ the ability of the FDE

to identify writers. However, the procedure presented above does

suggest that one approach to designing an empirical study of the

individuality of handwriting within a specific population is to fix

the desired upper bound on the RMP and then select the number

of writers in the study to produce the desired upper bound.

The smallest possible upper bound on the RMP occurs when

there are no observed matches in a collection of writing samples

from a large number of writers. In this case, the larger the number

of writers in the study, the smaller the upper bound, as shown in

Fig. 2. For example, the calculations graphed in Fig. 2 show that a

sample of 2000 writers would yield a 95% upper confidence bound

on the RMP on the order of 1 in one million, assuming no

observed matches.

This upper bound, however, assumes the ideal scenario that there

are no matches observed when the collected writing samples are

compared pairwise. Furthermore, for a fixed size of writing samples

and fixed RNMP threshold, the probability of observing a match

goes up as writing samples from more writers are compared. So,

one must also control the chance of observing a match in the

N (N ) 1) ⁄2 pairwise comparisons. Heuristically, this can be done

by choosing an appropriate size for the writing samples (i.e., the

number of characters in the writing sample). In other words, there

must be a balance between the number of characters in the writing

samples and the number of writers providing writing samples in

the study.

The relationship between writing sample size and probability of

a match is the focus of ongoing research at the George Mason

FIG. 2—Smallest possible 95% upper bound on the RMP, as a function

of number of writers.
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University Document Forensics Laboratory. For the Chi-Squared

Classifier, Table 1 shows the minimum size of writing samples

required for three specific probabilities of observing no matches

when comparing writing samples pairwise from each of N writers.

The values given in Table 1 are based on a very conservative prob-

ability inequality (Chebyshev’s Inequality [18]) and the assumption

that the ‘‘true’’ RMP is very small, if not zero.

As illustrated in Fig. 3, Table 1 and Fig. 2 can be combined to

determine the number of writers and size of writing sample needed

for a specified upper bound. For example, suppose we would like

to obtain a 95% upper bound on the RMP of 1 in 100,000 for a

RNMP threshold of 0.01. From Fig. 2, the 95% upper confidence

bound for the RMP would be 1 in 100,000 for c. 700 writers,

assuming no observed matches. Furthermore, from Table 1, we

would need to have each individual submit a writing sample with

at least the number of characters shown in Fig. 3 for various

chances of observing no matches.

Discussion

The proposition that no two individuals have the same writing

profile cannot be proven empirically. However, the RMP, which

can be investigated empirically, provides both a measure of the

degree of individuality relative to a specific comparison procedure

of two writing samples (the so-called biometric individuality) as

well as an upper bound on the underlying degree of individuality

of writing profiles (as measured by the rarity of matching profiles).

Therefore, although an empirical study cannot ‘‘prove’’ uniqueness

of writing profiles, it potentially can be used to show that the

chance of two writers having the same writing profile is very

small.

The empirical estimation of a small probability, such as an

RMP, in a population where individuals tend to have different (if

not ultimately unique) writing profiles, is a difficult problem. The

estimation problem is further complicated in the current scenario

by the inherent natural variability in writing samples, thus necessi-

tating collecting writing samples with a large number of characters

from a large number of individuals. In such a scenario, there are

several advantages to basing estimation of the RMP on pairwise

comparisons. First, with the current availability of automation, the

difficulty in handwriting studies is collecting the writing samples,

not comparing two documents. So, all possible comparisons should

be utilized to decrease the variability in estimates of the RMP.

Second, the RMP estimated from pairwise comparisons is a natural

U-statistic, and U-statistics are well studied. U-statistics more

efficiently utilize the information from all pairwise comparisons of

samples by modeling the dependency structure between individual

comparisons. Thus, they can be used to construct an approximate

upper confidence bound on the RMP based on using the informa-

tion in all pairwise comparisons. Also, the upper bound used in this

study can be used when there are no pairwise matches, a situation

where many of the classical methods fail.

Finally, we have shown that the strength of the results from an

empirical study depends on the size of the writing samples used

and the number of individuals in the study. While the ‘‘true’’ RMP

depends only on the size of the writing samples studied, our ability

to estimate it is very dependent on both the size of the writing

samples and the number of writers represented in the database. It is

important to keep this interplay in mind when developing an empir-

ical investigation of handwriting individuality.
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